A097870 Molien series for group of order 4608 acting on joint weight enumerators of a pair of binary doubly-even self-dual codes.
1, 2, 4, 10, 17, 27, 45, 66, 92, 130, 173, 223, 289, 362, 444, 546, 657, 779, 925, 1082, 1252, 1450, 1661, 1887, 2145, 2418, 2708, 3034, 3377, 3739, 4141, 4562, 5004, 5490, 5997, 6527, 7105, 7706, 8332, 9010, 9713, 10443, 11229, 12042, 12884, 13786, 14717, 15679
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18 (1972), 794-805.
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
Crossrefs
Cf. A097869.
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 )); // G. C. Greubel, Feb 05 2020 -
Maple
m:=50; S:=series((1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 05 2020
-
Mathematica
CoefficientList[Series[(1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, {x,0,50}], x] (* G. C. Greubel, Feb 05 2020 *) LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,2,4,10,17,27,45,66},50] (* Harvey P. Dale, Jun 11 2022 *)
-
PARI
Vec((x+1)*(x^2-x+1)*(x^4+x^3+x^2+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Feb 12 2015
-
Sage
def A097870_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 ).list() A097870_list(50) # G. C. Greubel, Feb 05 2020
Formula
G.f.: (1 + x^2 + 2*x^3 + x^4 + x^5 + x^6 + x^7)/(1 - 2*x + x^2 - 2*x^3 +
4*x^4 - 2*x^5 + x^6 - 2*x^7 + x^8).
G.f.: (1+x)*(1-x+x^2)*(1+x^2+x^3+x^4) / ((1-x)^4*(1+x+x^2)^2). - Colin Barker, Feb 12 2015
Comments