cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097870 Molien series for group of order 4608 acting on joint weight enumerators of a pair of binary doubly-even self-dual codes.

Original entry on oeis.org

1, 2, 4, 10, 17, 27, 45, 66, 92, 130, 173, 223, 289, 362, 444, 546, 657, 779, 925, 1082, 1252, 1450, 1661, 1887, 2145, 2418, 2708, 3034, 3377, 3739, 4141, 4562, 5004, 5490, 5997, 6527, 7105, 7706, 8332, 9010, 9713, 10443, 11229, 12042, 12884, 13786, 14717, 15679
Offset: 0

Views

Author

N. J. A. Sloane, Sep 02 2004

Keywords

Comments

This is the Molien series for the group of order 128 discussed in A097869 extended by the extra generator diag{1,1,i,i}. This group was not considered in the reference cited.
The first g.f. inserts zeros between each pair of terms; the second g.f. does not. - Colin Barker, Feb 12 2015

Crossrefs

Cf. A097869.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 )); // G. C. Greubel, Feb 05 2020
    
  • Maple
    m:=50; S:=series((1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 05 2020
  • Mathematica
    CoefficientList[Series[(1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, {x,0,50}], x] (* G. C. Greubel, Feb 05 2020 *)
    LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,2,4,10,17,27,45,66},50] (* Harvey P. Dale, Jun 11 2022 *)
  • PARI
    Vec((x+1)*(x^2-x+1)*(x^4+x^3+x^2+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Feb 12 2015
    
  • Sage
    def A097870_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 ).list()
    A097870_list(50) # G. C. Greubel, Feb 05 2020

Formula

G.f.: (1 + x^2 + 2*x^3 + x^4 + x^5 + x^6 + x^7)/(1 - 2*x + x^2 - 2*x^3 +
4*x^4 - 2*x^5 + x^6 - 2*x^7 + x^8).
G.f.: (1+x)*(1-x+x^2)*(1+x^2+x^3+x^4) / ((1-x)^4*(1+x+x^2)^2). - Colin Barker, Feb 12 2015