A097874 Duplicate of A097885.
1, 1, 2, 4, 8, 1, 17, 4, 37, 13, 1, 82, 40, 5, 185, 116, 21, 1, 423, 326, 80, 6, 978, 899, 279
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle starts: 1; 1; 1, 1; 2, 2; 4, 4, 1; 8, 10, 3; 17, 24, 9, 1; ... Row n has 1+floor(n/2) terms. T(4,1)=4 because (UD)HH, H(UD)H, HH(UD) and U(UD)D are the only Motzkin paths of length 4 with 1 peak (here U=(1,1), H=(1,0) and D=(1,-1)); peaks are shown between parentheses.
eq:=G=1+z*G+z^2*G*(G-1+t):sol:=solve(eq,G): G:=sol[2]: Gser:=simplify(series(G,z=0,16)): P[0]:=1: for n from 1 to 13 do P[n]:=sort(coeff(Gser,z^n)) od: seq(seq(coeff(t*P[n],t^k),k=1..1+floor(n/2)),n=0..13); # Alternatively A097860_row := proc(n) local w,f,p,i; w := 1-x+x^2-x^2*t; f := (w-sqrt(w^2-4*x^2))/(2*x^2); p := simplify(coeff(series(f,x,3+2*n),x,n)); seq(coeff(p,t,i), i=0..iquo(n,2)) end: seq(print(A097860_row(n)), n=0..7); # Peter Luschny, Nov 14 2014 # third Maple program: b:= proc(x, y, t) option remember; expand(`if`(y<0 or y>x, 0, `if`(x=0, 1, b(x-1, y, 1)+b(x-1, y-1, 1)*t+b(x-1, y+1, z)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, 1)): seq(T(n), n=0..15); # Alois P. Heinz, Feb 01 2019
gf = With[{w = 1 - x + x^2 - x^2*t}, (w - Sqrt[w^2 - 4*x^2])/(2*x^2)]; cx[n_] := cx[n] = SeriesCoefficient[gf, {x, 0, n}]; T[n_, k_] := SeriesCoefficient[cx[n], {t, 0, k}]; Table[T[n, k], {n, 0, 14}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Dec 04 2017, after Peter Luschny *)
Comments