A097942 Highly totient numbers: each number k on this list has more solutions to the equation phi(x) = k than any preceding k (where phi is Euler's totient function, A000010).
1, 2, 4, 8, 12, 24, 48, 72, 144, 240, 432, 480, 576, 720, 1152, 1440, 2880, 4320, 5760, 8640, 11520, 17280, 25920, 30240, 34560, 40320, 51840, 60480, 69120, 80640, 103680, 120960, 161280, 181440, 207360, 241920, 362880, 483840, 725760, 967680
Offset: 1
Keywords
Examples
a(4) = 8 since phi(x) = 8 has the solutions {15, 16, 20, 24, 30}, one more solution than a(3) = 4 for which phi(x) = 4 has solutions {5, 8, 10, 12}.
Links
- Jud McCranie, Table of n, a(n) for n = 1..109 (terms 1..79 from T. D. Noe, terms 80..86 from Donovan Johnson)
- Wikipedia, Highly totient number.
Programs
-
Maple
HighlyTotientNumbers := proc(n) # n > 1 is search maximum local L, m, i, r; L := NULL; m := 0; for i from 1 to n do r := nops(numtheory[invphi](i)); if r > m then L := L,[i,r]; m := r fi od; [L] end: A097942_list := n -> seq(s[1], s = HighlyTotientNumbers(n)); A097942_list(500); # Peter Luschny, Sep 01 2012
-
Mathematica
searchMax = 2000; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; highlyTotientList = {1}; currHigh = 1; Do[If[phiAnsYldList[[n]] > phiAnsYldList[[currHigh]], highlyTotientList = {highlyTotientList, n}; currHigh = n], {n, 2, searchMax}]; Flatten[highlyTotientList]
-
PARI
{ A097942_list(n) = local(L, m, i, r); m = 0; for(i=1, n, \\ from Max Alekseyev, http://home.gwu.edu/~maxal/gpscripts/ r = numinvphi(i); if(r > m, print1(i,", "); m = r) ); } \\ Peter Luschny, Sep 01 2012
-
Sage
def HighlyTotientNumbers(n) : # n > 1 is search maximum. R = {} for i in (1..n^2) : r = euler_phi(i) if r <= n : R[r] = R[r] + 1 if r in R else 1 # print R.keys() # A002202 # print R.values() # A058277 P = []; m = 1 for l in sorted(R.keys()) : if R[l] > m : m = R[l]; P.append((l,m)) # print [l[0] for l in P] # A097942 # print [l[1] for l in P] # A131934 return P A097942_list = lambda n: [s[0] for s in HighlyTotientNumbers(n)] A097942_list(500) # Peter Luschny, Sep 01 2012
Extensions
Edited and extended by Robert G. Wilson v, Sep 07 2004
Comments