A097945 a(n) = mu(n)*phi(n) where mu(n) is the Mobius function (A008683) and phi(n) is the Euler totient function (A000010).
1, -1, -2, 0, -4, 2, -6, 0, 0, 4, -10, 0, -12, 6, 8, 0, -16, 0, -18, 0, 12, 10, -22, 0, 0, 12, 0, 0, -28, -8, -30, 0, 20, 16, 24, 0, -36, 18, 24, 0, -40, -12, -42, 0, 0, 22, -46, 0, 0, 0, 32, 0, -52, 0, 40, 0, 36, 28, -58, 0, -60, 30, 0, 0, 48, -20, -66, 0, 44, -24, -70, 0, -72, 36, 0, 0, 60, -24, -78, 0, 0, 40, -82, 0
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Wikipedia, Euler's totient function
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> mobius(n)*phi(n): seq(a(n), n=1..100); # Alois P. Heinz, Aug 06 2012
-
Mathematica
Table[ MoebiusMu[n]EulerPhi[n], {n, 85}] (* Robert G. Wilson v, Sep 06 2004 *)
-
PARI
a(n)=moebius(n)*eulerphi(n) \\ Charles R Greathouse IV, Feb 21 2013
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 - p*X + X))[n], ", ")) \\ Vaclav Kotesovec, Jun 14 2020
Formula
Dirichlet g.f.: Product_{primes p} (1-p^(1-s)+p^(-s)). - R. J. Mathar, Aug 29 2011
Sum_{d|n} abs(a(d)) = rad(n) = A007947(n). - Rémy Sigrist, Nov 05 2017
Sum_{k=1..n} abs(a(k)) ~ c * n^2, where c = A065464/2 = (1/2) * Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.21412475283854722... Equivalently, c = A065463 * 3 / Pi^2. - Vaclav Kotesovec, Jun 14 2020
From Antti Karttunen, Aug 20 2021: (Start)
a(n) = mu(n)*A000010(n) = mu(n)*A003958(n) = mu(n)*A047994(n) = mu(n)*A173557(n), where mu is Möbius mu function (A008683).
(End)
Extensions
More terms from Robert G. Wilson v, Sep 06 2004
Edited by N. J. A. Sloane, May 20 2006
Comments