A264341
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change +-(.,.) 0,0 0,1 or 1,2.
Original entry on oeis.org
4, 13, 8, 49, 55, 16, 181, 490, 233, 32, 676, 3567, 4900, 987, 64, 2521, 28925, 70669, 49000, 4181, 128, 9409, 223356, 1243225, 1399783, 490000, 17711, 256, 35113, 1759250, 20386617, 53429620, 27726581, 4900000, 75025, 512, 131044, 13750304
Offset: 1
Some solutions for n=3 k=4
..7..8..9..3..4....1..0..3..2..4....7..8..2..3..4....1..2..9..4..3
.12..5..0..1..2...12..6..7..9..8....5..6..0..1..9...12..6..0..7..8
.17.10.13..6.14...11.10..5.14.13...11.10.12.13.14...10.18..5.14.13
.15.16.18.11.19...16.15.17.18.19...15.17.16.18.19...15.17.16.11.19
A113249
Corresponds to m = 3 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(n-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
Original entry on oeis.org
-1, 4, 11, 1, 59, 484, -1009, 6241, -2761, 13924, 87251, 57121, 49139, 4072324, -7165609, 35058241, 10350959, 30492484, 559712411, 973502401, -1957852501, 30450948004, -41421000289, 174055005601, 241428053159, 9658565284, 2872244917091, 11300885699041, -25300162140061
Offset: 0
a(3, 13) = 93161710957356599364/((-2+i*sqrt(5))^14*(2+i*sqrt(5))^14) = 4072324 = 2^2*1009^2.
-
f:= gfun:-rectoproc({a(n) = 81*a(n-4)+36*a(n-3)-4*a(n-1),a(0) = -1, a(1) = 4, a(2) = 11, a(3) = 1},a(n),remember):
map(f, [$0..30]); # Robert Israel, Oct 23 2017
-
LinearRecurrence[{-4, 0, 36, 81}, {-1, 4, 11, 1}, 29] (* Jean-François Alcover, Sep 25 2017 *)
-
Vec(-(1 - 27*x^2 - 81*x^3) / ((1 - 3*x)*(1 + 3*x)*(1 + 4*x + 9*x^2)) + O(x^30)) \\ Colin Barker, May 19 2019
A113250
Expansion of g.f. -(1 - 48*x^2 - 256*x^3) / ((1 - 4*x)*(1 + 4*x)*(1 + 4*x + 16*x^2)).
Original entry on oeis.org
-1, 4, 32, 64, -256, 4096, -4096, 16384, 131072, 262144, -1048576, 16777216, -16777216, 67108864, 536870912, 1073741824, -4294967296, 68719476736, -68719476736, 274877906944, 2199023255552, 4398046511104, -17592186044416, 281474976710656, -281474976710656
Offset: 0
-
LinearRecurrence[{-4, 0, 64, 256}, {-1, 4, 32, 64}, 25] (* Robert P. P. McKone, Aug 25 2023 *)
CoefficientList[Series[-(1-48x^2-256x^3)/((1-4x)(1+4x)(1+4x+16x^2)),{x,0,30}],x] (* Harvey P. Dale, Aug 27 2025 *)
-
Vec(-(1 - 48*x^2 - 256*x^3) / ((1 - 4*x)*(1 + 4*x)*(1 + 4*x + 16*x^2)) + O(x^25)) \\ Colin Barker, May 19 2019
A113251
Corresponds to m = 5 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(m-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
Original entry on oeis.org
-1, 4, 59, 289, -1381, 13924, 10079, 2209, 520439, 7628644, -23994301, 149401729, 490531859, 406344964, -1681645081, 149155846849, -249406479121, 1083427010884, 9530848465739, 30158362505569, -168169798384501, 2302905921914404, -239007146013841, 2988025311585889
Offset: 0
-
with(gfun): seriestolist(series((-1+75*x^2+625*x^3)/((5*x+1)*(1-5*x)*(25*x^2+4*x+1)), x=0,25));
-
LinearRecurrence[{-4,0,100,625},{-1,4,59,289},40] (* Harvey P. Dale, Jul 05 2021 *)
-
Vec(-(1 - 75*x^2 - 625*x^3) / ((1 - 5*x)*(1 + 5*x)*(1 + 4*x + 25*x^2)) + O(x^30)) \\ Colin Barker, May 20 2019
A113252
Corresponds to m = 6 in a family of 4th order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(m-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
Original entry on oeis.org
-1, 4, 92, 784, -3856, 33856, 96704, 73984, -418048, 59474944, -101917696, 443355136, 6249181184, 37406654464, -217868812288, 2345945595904, 4101714673664, 699056521216, 52661959000064, 3420344569298944, -8264891921072128, 41548867031793664
Offset: 0
-
LinearRecurrence[{-4, 0, 144, 1296}, {-1, 4, 92, 784}, 25] (* Paolo Xausa, Jun 10 2024 *)
-
Vec(-(1 - 108*x^2 - 1296*x^3) / ((1 - 6*x)*(1 + 6*x)*(1 + 4*x + 36*x^2)) + O(x^25)) \\ Colin Barker, May 20 2019
A113253
Corresponds to m = 7 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(m-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
Original entry on oeis.org
-1, 4, 131, 1681, -8341, 68644, 369431, 923521, -10266601, 278289124, -45142549, 385690321, 28351798019, 545917055044, -2216460177409, 15348835582081, 113677067503919, 421612384372804, -3999798649362349, 75132454060794001
Offset: 0
-
LinearRecurrence[{-4, 0, 196, 2401}, {-1, 4, 131, 1681}, 25] (* Paolo Xausa, Jun 10 2024 *)
-
Vec(-(1 - 147*x^2 - 2401*x^3) / ((1 - 7*x)*(1 + 7*x)*(1 + 4*x + 49*x^2)) + O(x^25)) \\ Colin Barker, May 20 2019
A113254
Corresponds to m = 8 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(m-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
Original entry on oeis.org
-1, 4, 176, 3136, -15616, 123904, 1028096, 4734976, -51183616, 975437824, 1521483776, 205520896, 39241908224, 4227925540864, -10627091267584, 53396107165696, 1029499365883904, 10479050187341824, -71775363146973184, 769363745204862976
Offset: 0
-
LinearRecurrence[{-4, 0, 256, 4096}, {-1, 4, 176, 3136}, 25] (* Paolo Xausa, Jun 10 2024 *)
-
Vec(-(1 - 192*x^2 - 4096*x^3) / ((1 - 8*x)*(1 + 8*x)*(1 + 4*x + 64*x^2)) + O(x^25)) \\ Colin Barker, May 20 2019
A113255
Corresponds to m = 9 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(m-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
Original entry on oeis.org
-1, 4, 227, 5329, -26581, 206116, 2391479, 16785409, -174757993, 2826198244, 9824173259, 14210785681, -287742103741, 22876687229764, -22446053606113, 89792737665409, 5164999769137199, 122161424469552196, -606821408584323661, 4689875711360495569
Offset: 0
-
LinearRecurrence[{-4, 0, 324, 6561}, {-1, 4, 227, 5329}, 25] (* Paolo Xausa, Jun 10 2024 *)
-
Vec(-(1 - 243*x^2 - 6561*x^3) / ((1 - 9*x)*(1 + 9*x)*(1 + 4*x + 81*x^2)) + O(x^20)) \\ Colin Barker, May 20 2019
A113256
Corresponds to m = 10 in a family of 4th-order linear recurrence sequences given by a(m,n) = m^4*a(n-4) + (2*m)^2*a(n-3) - 4*a(m-1), a(m,0) = -1, a(m,1) = 4, a(m,2) = -13 + 6*(m-1) + 3*(m-1)^2, a(m,3) = (-8+m^2)^2.
Original entry on oeis.org
-1, 4, 284, 8464, -42256, 322624, 4935104, 47997184, -485499136, 7142278144, 39980801024, 125848981504, -2501476028416, 97421005963264, 60463578988544, 16045087719424, 13889461750267904, 942837644226985984, -3160296751934734336, 18357422585040338944
Offset: 0
-
LinearRecurrence[{-4, 0, 400, 10000}, {-1, 4, 284, 8464}, 25] (* Paolo Xausa, Jun 10 2024 *)
-
Vec(-(1 - 300*x^2 - 10000*x^3) / ((1 - 10*x)*(1 + 10*x)*(1 + 4*x + 100*x^2)) + O(x^20)) \\ Colin Barker, May 20 2019
Original entry on oeis.org
1, -3, 13, -48, 181, -675, 2521, -9408, 35113, -131043, 489061, -1825200, 6811741, -25421763, 94875313, -354079488, 1321442641, -4931691075, 18405321661, -68689595568, 256353060613, -956722646883, 3570537526921, -13325427460800, 49731172316281
Offset: 0
-
/* By definition: */
m:=15; R:=PowerSeriesRing(Integers(), m);
A001570:=Coefficients(R!((1-x)/(1-14*x+x^2)));
A007654:=Coefficients(R!(-3*x^2*(1+x)/(-1+x)/(1-14*x+x^2)));
&cat[[A001570[i],-A007654[i]]: i in [1..m-2]]; // Bruno Berselli, Feb 05 2013
-
seriestolist(series((x^2+x+1)/((1-x)*(x+1)*(x^2+4*x+1)), x=0,25));
-
LinearRecurrence[{-4,0,4,1},{1,-3,13,-48},30] (* Harvey P. Dale, Jun 15 2018 *)
Showing 1-10 of 12 results.
Comments