A119290
a(n) is the total number of digits in the first 10^n primes.
Original entry on oeis.org
1, 16, 271, 3803, 48982, 610484, 7245905, 83484450, 942636916, 10487584405, 115369529592, 1257761617574, 13611696080735, 146406754329933, 1566562183907264, 16687323842873339, 177063766685219106, 1872323812397478246, 19738266145121133639, 207517446542560214799, 2176390177056541482871, 22774922890367225576581
Offset: 0
At a(1) there are 10^1 primes, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and the total number of digits is 16.
-
Accumulate@Table[c = 0; i0 = If[n == 0, 1, 10^(n - 1) + 1]; For[i = i0, i <= 10^n, i++, c += IntegerLength[Prime[i]]]; c, {n, 0, 6}] (* Robert Price, Jun 09 2019 *)
A228413
Count of the first 10^n primes which do not contain the digit 1.
Original entry on oeis.org
1, 6, 54, 532, 4675, 34425, 262549, 2051466, 16831152, 155616459, 1529462564, 14830618421, 141585123501
Offset: 0
a(2) = 54 since there are 54 primes less than 541 (the 100th prime) that do not contain a 1. Namely: 2, 3, 5, 7, 23, 29, ..., 523.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 1] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228421
Count of the first 10^n primes which do not contain the digit 9.
Original entry on oeis.org
1, 8, 69, 620, 5010, 45732, 418142, 3785060, 32579606, 296601070, 2683254222, 24354108057, 212324183352
Offset: 0
a(1) = 8 since there are 8 primes in the first 10 (through 29) that do not contain a 9. Namely: 2, 3, 5, 7, 11, 13, 17, 23.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 9] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
-
def a(n):
count = 0
for k in range(1,10**n+1):
if '9' not in str(prime(k)):
count += 1
return count
n = 0
while n < 10:
print(a(n), end=', ')
n += 1
# Derek Orr, Jul 27 2014
A231412
Count of the first 10^n primes which do not contain the digit 0.
Original entry on oeis.org
1, 10, 91, 819, 7122, 61702, 557224, 5062320, 45002763, 395879190, 3579400605, 32487367715, 294505958253
Offset: 0
a(2) = 91 = 100-9 since only 9 primes less than 541 (the 100th prime) contain a zero. Namely: 101, 103, 107, 109, 307, 401, 409, 503, 509.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 0] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A183196
Total number of digits in the numbers involved in generating A183194.
Original entry on oeis.org
16, 36, 36, 97, 97, 97, 6314, 24404, 24404, 180346, 871640, 871640, 1817221, 3893939, 3893939, 79665948, 1046312296, 1046312296, 1046312296, 1046312296, 1046312296, 4754824913842, 6377067475119, 6377067475119
Offset: 1
a(2)=36 since A019518(2)=20 and A183195(20)=235...616771 has 36 digits.
A228414
Count of the first 10^n primes which do not contain the digit 2.
Original entry on oeis.org
0, 7, 77, 697, 6497, 55552, 512100, 4710641, 42205969, 341224891, 2787791578, 22971326749, 190650687957
Offset: 0
a(1) = 7 since there are 7 primes less than 29 (the 10th prime) that do not contain a 2. Namely: 3, 5, 7, 11, 13, 17, 19.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 2] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228415
Count of the first 10^n primes which do not contain the digit 3.
Original entry on oeis.org
1, 7, 54, 534, 4909, 45405, 385008, 3539880, 32260781, 294001190, 2564080248, 23271246324, 211753431947
Offset: 0
a(1) = 7 since there are 7 primes in the first 10 (through 29) that do not contain a 3. Namely: 2, 5, 7, 11, 17, 19, 29.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 3] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228416
Count of the first 10^n primes which do not contain the digit 4.
Original entry on oeis.org
1, 10, 75, 721, 6637, 60605, 514809, 4730382, 43254591, 392344689, 3421561753, 31049600245, 282499317912
Offset: 0
a(1) = 10 since there are 10 primes in the first 10 (through 29) that do not contain a 4. Namely: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 4] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228417
Count of the first 10^n primes which do not contain the digit 5.
Original entry on oeis.org
1, 9, 85, 708, 6635, 60640, 535534, 4737129, 43297195, 392641522, 3536880527, 31067514571, 282635824867
Offset: 0
a(1) = 9 since there are 9 primes in the first 10 (through 29) that do not contain a 5. Namely: 2, 3, 7, 11, 13, 17, 19, 23, 29.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 5] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
A228418
Count of the first 10^n primes which do not contain the digit 6.
Original entry on oeis.org
1, 10, 90, 719, 6696, 60845, 554933, 4742037, 43331008, 392875212, 3573268469, 31207451849, 282765603085
Offset: 0
a(1) = 10 since there are 10 primes in the first 10 (through 29) that do not contain a 6. Namely: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
-
Table[Length[Select[Range[10^n], DigitCount[Prime[#], 10, 6] == 0 &]], {n, 0, 5}] (* Robert Price, Mar 23 2020 *)
Showing 1-10 of 12 results.