cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097964 Rectangular array read by rows (n > 0, 1 <= k <= 3): T(n,k) = floor(b(n,k)/2^((A002264(n) + 1)/3)), where b(n,k) = b(n-3,k) + 3*b (n-6,k) + 2*b(n-9,k), with initial values given in comments.

Original entry on oeis.org

2, 5, 7, 3, 5, 8, 2, 3, 6, 5, 8, 13, 6, 11, 17, 4, 8, 12, 10, 17, 27, 12, 21, 34, 9, 15, 24, 20, 34, 54, 25, 42, 68, 18, 30, 49, 40, 68, 108, 50, 85, 136, 36, 61, 97, 80, 135, 216, 101, 170, 271, 72, 121, 194, 160, 270, 430, 201, 339, 541, 144, 242, 387
Offset: 1

Views

Author

Roger L. Bagula, Sep 06 2004

Keywords

Comments

From Franck Maminirina Ramaharo, Nov 08 2018: (Start)
The initial values for b(n,k), 1 <= n <= 9, 1 <= k <= 3, are
n\k | 1 2 3
----+---------
1 | 4 8 12
2 | 5 8 13
3 | 4 6 10
4 | 10 16 26
5 | 13 22 35
6 | 9 16 25
7 | 26 44 70
8 | 32 54 86
9 | 23 38 61. (End)

Examples

			Array begins:
   2,  5,  7;
   3,  5,  8;
   2,  3,  6;
   5,  8, 13;
   6, 11, 17;
   4,  8, 12;
  10, 17, 27;
  12, 21, 34;
   9, 15, 24;
  20, 34, 54;
  25, 42, 68;
  18, 30, 49;
   ... - _Franck Maminirina Ramaharo_, Nov 08 2018
		

Crossrefs

Cf. A097966.

Programs

  • Mathematica
    M = N[4^(1/3)*({{0, 1, 0}, {1, 1, 0}, {0, 0, 0}}/2 + {{0, 1, 0}, {0, 0, 1}, {1, 1, 0}}/2)];
    A[n_] := M.A[n - 1]; A[0] := {{0, 1, 1}, {1, 1, 2}, {1, 2, 3}};
    Table[Floor[M.A[n]], {n, 1, 12}]//Flatten

Formula

From Franck Maminirina Ramaharo, Nov 08 2018: (Start)
Let M and A denote the following 3 X 3 matrices:
0, 2, 0
M = 1, 1, 1
1, 1, 0
and
0, 1, 1
A = 1, 1, 2
1, 2, 3.
Then applying floor() to the entries in (h*M)^(n + 1)*A, where h = 1/(2^(1/3)), yields row 3*n - 2 to 3*n. (End)

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Nov 08 2018