cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097988 a(n) = Sum_{d dividing n} tau(d)^3 = (Sum_{d dividing n} tau(d))^2.

Original entry on oeis.org

1, 9, 9, 36, 9, 81, 9, 100, 36, 81, 9, 324, 9, 81, 81, 225, 9, 324, 9, 324, 81, 81, 9, 900, 36, 81, 100, 324, 9, 729, 9, 441, 81, 81, 81, 1296, 9, 81, 81, 900, 9, 729, 9, 324, 324, 81, 9, 2025, 36, 324, 81, 324, 9, 900, 81, 900, 81, 81, 9, 2916, 9, 81, 324
Offset: 1

Views

Author

Lekraj Beedassy, Sep 07 2004

Keywords

Comments

When n = p^e is a prime power, we have the corollary a(n) = Sum_{r=1..e+1} r^3 = (Sum_{r=1..e+1} r)^2, i.e. A000537(n) = (A000217(n))^2.
3^A001221(n) always divides a(n) except if n > 1 and included in A000578. - Enrique Pérez Herrero, Jul 12 2010

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 47.
  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problem 562, pp. 75, 265; Ellipses Paris 2004.
  • William J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 85, Problem 2.
  • William J. LeVeque, Fundamentals of Number Theory, Dover Publications Inc, 1977, p. 125.
  • Joe Roberts, The Lure of Integers, MAA, 1992, Integer 3, pages 8-9.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 84.

Crossrefs

Programs

  • Maple
    with(numtheory); f:=proc(n) local t1; t1:=divisors(n); add(sigma[0](i), i in t1)^2; end;
  • Mathematica
    tau[1,n_Integer] := 1; SetAttributes[tau, Listable]; tau[k_Integer,n_Integer] := Plus@@(tau[k-1,Divisors[n]]); A097988[n_] := tau[3,n]^2; Table[A097988[n], {n, 100}] (* Enrique Pérez Herrero, Jul 12 2010 *)
    f[n_]:=Total[DivisorSigma[0,Divisors[n]]]^2;f/@Range[100] (* Ivan N. Ianakiev, Mar 05 2015 *)
    a[n_] := DivisorSum[n, DivisorSigma[0, #]&]^2; Array[a, 100] (* Jean-François Alcover, Dec 02 2015 *)
    f[p_, e_] := ((e+1)*(e+2)/2)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    a(n)=sumdiv(n,d,numdiv(d))^2 \\ Charles R Greathouse IV, Jan 22 2013
    
  • PARI
    a(n)=sumdiv(n, d, numdiv(d)^3); \\ Michel Marcus, Nov 21 2013

Formula

a(n) = (Sum_{d dividing n} tau(d))^2 = (A007425(n))^2.
Multiplicative with a(p^e) = ((e+1)*(e+2)/2)^2. - Amiram Eldar, Sep 20 2020
Dirichlet g.f.: zeta(s)^5 * Product_{p prime} (1 + 4/p^s + 1/p^(2*s)). - Amiram Eldar, Sep 14 2023

Extensions

More terms from Carl Najafi, Oct 19 2011
Entry revised by N. J. A. Sloane, May 22 2012