A098030 Areas of integer-sided triangles whose area equals their perimeter.
24, 30, 36, 42, 60
Offset: 1
Examples
The areas or perimeters 24, 30, 36, 42, 60 pertain respectively to triangles with sides (6, 8, 10), (5, 12, 13), (9, 10, 17), (7, 15, 20), (6, 25, 29).
References
- S. Ainley, Mathematical Puzzles, Problem J8 p. 113, G. Bell & Sons Ltd, London (1977).
Links
- James Grime and Brady Haran, Superhero Triangles, Numberphile video (2020)
Crossrefs
A row of the triangle in A290451.
Programs
-
Mathematica
m0 = 10 (* = initial max side *); okQ[{x_, y_, z_}] := x <= y <= z && (-x + y + z) (x + y - z) (x - y + z) (x + y + z) == 16 (x + y + z)^2; Clear[f]; f[m_] := f[m] = Select[Tuples[Range[m], 3], okQ]; f[m = m0]; f[m = 2 m]; While[f[m] != f[m/2], m = 2 m]; sides = f[m]; Total /@ sides // Sort (* Jean-François Alcover, Jul 21 2017 *)
Comments