A290451
Irregular triangle read by rows: row n (n>=1) lists the distinct areas of integer-sided triangles whose area equals n times their perimeter.
Original entry on oeis.org
24, 30, 36, 42, 60, 84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 684, 1224, 192, 204, 210, 216, 240, 252, 264, 270, 324, 330, 336, 378, 384, 408, 420, 456, 462, 480, 504, 522, 540, 546, 624, 690, 714, 780, 792, 840, 876, 966, 990, 1176, 1248, 1320, 1380, 1806, 2394, 2460, 3120, 4446, 8436, 336, 360, 384, 432, 456, 480, 528, 576, 624, 672, 720, 840, 960, 1056, 1176
Offset: 1
The first few rows of the triangle are:
(n=1) 24, 30, 36, 42, 60
(n=2) 84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 684, 1224
(n=3) 192, 204, 210, 216, 240, 252, 264, 270, 324, 330, 336, 378, ... (truncated)
(n=4) 336, 360, 384, 432, 456, 480, 528, 576, 624, 672, 720, 840, ... (truncated)
(n=5) 540, 600, 630, 660, 750, 810, 840, 900, 930, 1050, 1080, ... (truncated)
(n=6) 756, 768, 780, 816, 840, 864, 924, 960, 972, 984, 1008, ... (truncated)
(n=7) 1134, 1176, 1344, 1386, 1470, 1596, 1680, 1764, 1848, 1890, ... (truncated)
...
For the initial term in each row see
A289155, for last term see
A289156.
-
row[k_] := Block[{v={},r,s,t}, Do[If[r <= s && 4 k^2 < r s <= 12 k^2 && IntegerQ[ t = 4 k^2 (r + s)/(r s - 4 k^2)] && t >= s, AppendTo[v, r+s+t ]], {r, Floor[2 Sqrt[3] k]}, {s, Floor[4 k^2/r], Ceiling[12 k^2/r]}]; 2 k Union@ v]; Join @@ Array[row, 4] (* Giovanni Resta, Mar 04 2020 *)
Title modified and inconsistent double occurrence of 168 (a(14)) deleted by
Hugo Pfoertner, Mar 04 2020
A289218
Areas of integer-sided triangles whose area equals twice their perimeter.
Original entry on oeis.org
84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 684, 1224
Offset: 1
The areas 84,96,108,120,132, ... pertain respectively to triangles with sides (13,14,15), (12,16,20), (15,15,24), (10,24,26), (11,25,30), ..., equal twice their perimeter 42,48,54,60,66,...
2nd row of the irregular triangle in
A290451.
-
f[a_, b_, c_] := Block[{P = Total[{a, b, c}]/2}, Sqrt[P (P - a) (P - b) (P - c)]]; Sort@ Map[f @@ # &, Select[Union@ Map[Sort, Tuples[Range@ 200, {3}]], f @@ # == 4 Total@ # &] ] (* Michael De Vlieger, Jul 03 2017 *)
A289219
Areas of integer-sided triangles whose area equals 3 times their perimeter.
Original entry on oeis.org
192, 204, 210, 216, 240, 252, 264, 270, 324, 330, 336, 378, 384, 408, 420, 456, 462, 480, 504, 522, 540, 546, 624, 690, 714, 780, 792, 840, 876, 966, 990, 1176, 1248, 1320, 1380, 1806, 2394, 2460, 3120, 4446, 8436
Offset: 1
The areas 192,204,210,216,240, ... pertain respectively to triangles with sides (20,20,24), (17,25,26), (20,21,29), (18,24,30), (16,30,34), ..., equal 3 times their perimeter 64,68,70,72,80, ...
-
f[a_, b_, c_] := Block[{P = Total[{a, b, c}]/2}, Sqrt[P (P - a) (P - b) (P - c)]]; Sort@ Map[f @@ # &, Select[Union@ Map[Sort, Tuples[Range@ 150, {3}]], f @@ # == 3 Total@# &] ] (* Michael De Vlieger, Jul 03 2017 *)
A289220
Areas of integer-sided triangles whose area equals 4 times their perimeter.
Original entry on oeis.org
336, 360, 384, 432, 456, 480, 528, 576, 624, 672, 720, 840, 960, 1056, 1176, 1200, 1224, 1296, 1584, 1680, 1944, 2064, 2088, 2184, 2328, 2520, 2736, 2856, 3240, 3696, 4440, 4488, 4896, 5256, 6600, 7728, 9240, 9360, 9384, 17688, 34320
Offset: 1
The areas 336,360,384,432,456, ... pertain respectively to triangles with sides (26,28,30), (25,29,36), (24,32,40), (30,30,48), (25,38,51), ..., equal 4 times their perimeter 84,90,96,108,114,...
-
f[a_, b_, c_] := Block[{P = Total[{a, b, c}]/2}, Sqrt[P (P - a) (P - b) (P - c)]]; Sort@ Map[f @@ # &, Select[Union@ Map[Sort, Tuples[Range@ 200, {3}]], f @@ # == 4 Total@ # &] ] (* Michael De Vlieger, Jul 03 2017 *)
A289221
Areas of integer-sided triangles whose area equals 5 times their perimeter.
Original entry on oeis.org
540, 600, 630, 660, 750, 810, 840, 900, 930, 1050, 1080, 1320, 1380, 1500, 1560, 1590, 1740, 2040, 2070, 2280, 2310, 2520, 2580, 2970, 3150, 3240, 3720, 4020, 4350, 4530, 4620, 5460, 6270, 6300, 7260, 7560, 7800, 7980, 11730, 12210, 14040, 18870, 22260, 27030, 27300, 52530, 103020
Offset: 1
The areas 540,600,630,660,750, ... pertain respectively to triangles with sides (30,39,39), (30,40,50), (28,45,53), (26,51,55), (25,60,65)...., equal 5 times their perimeter 108,120,126,132,150,...
A289253
Areas of integer-sided triangles whose area equals 7 times their perimeter.
Original entry on oeis.org
1134, 1176, 1344, 1386, 1470, 1596, 1680, 1764, 1848, 1890, 2016, 2058, 2184, 2310, 2394, 2520, 2604, 2856, 2940, 3024, 3360, 3696, 3780, 3864, 4032, 4242, 4368, 4536, 4830, 5292, 5544, 5712, 6006, 6090, 6216, 6258, 6510, 6636, 6720
Offset: 1
The areas 1134,1176,1344,1386,1470, ... pertain respectively to triangles with sides (39,60,63), (42,56,70), (40,68,84), (36,77,85), (35,84,91)...., equal 7 times their perimeter 162,168,192,198,210,...
Cf.
A332927 (listing distinct triangles with identical areas separately).
A374594
Areas of trapezoids with integer sides and height whose area equals their perimeter.
Original entry on oeis.org
16, 18, 18, 20, 20, 24, 30, 30, 36, 48, 70, 90, 180, 180, 420, 528, 870, 1170, 2610
Offset: 1
See attached illustration of the terms a(1) to a(11).
-
with(NumberTheory):
A374594:=proc(k);
local K,L,S,T,i,a,c,x,y,h,b,d;
L:=map(x->x/2, Divisors(2*k) minus {1, 2});
S:=[];
T:=[];
K:=[];
for i to numelems(L) do
for c to L[i] do
a:=2*L[i]-c;
h:=k/L[i];
x:=0;
while x^2<(k-a-c)^2-h^2 do
if issqr(x^2+h^2) then
d:=isqrt(x^2+h^2);
b:=k-a-c-d;
y:=a-c-x;
if h^2+y^2=b^2 then
S:=[a,b,c,d];
S:=sort(S);
if member(S,T)=false then
T:=[op(T),S];
K:=[op(K),k];
fi;
fi;
fi;
x:=x+1;
od;
od;
od;
if numelems(K)>0 then
return op(K)
fi;
end proc;
seq(A374594(k),k=1..3000);
A332879
Areas of integer-sided triangles whose area equals 6 times their perimeter.
Original entry on oeis.org
756, 768, 780, 816, 840, 864, 924, 960, 972, 984, 1008, 1020, 1056, 1080, 1092, 1116, 1140, 1188, 1260, 1296, 1320, 1344, 1380, 1404, 1500, 1512, 1536, 1620, 1632, 1680, 1716, 1740, 1824, 1836, 1848, 1920, 1980, 2016, 2088, 2160, 2184, 2244, 2376, 2436, 2460
Offset: 1
Cf.
A332926 (listing distinct triangles with identical areas separately).
Comments