cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A098030 Areas of integer-sided triangles whose area equals their perimeter.

Original entry on oeis.org

24, 30, 36, 42, 60
Offset: 1

Views

Author

Lekraj Beedassy, Sep 10 2004

Keywords

Comments

There are no further terms. Note that without the condition "integer-sided" there are other solutions, such as (9/2, 20, 41/2) which has perimeter and area 45. - David Wasserman, Jan 03 2008

Examples

			The areas or perimeters 24, 30, 36, 42, 60 pertain respectively to triangles with sides (6, 8, 10), (5, 12, 13), (9, 10, 17), (7, 15, 20), (6, 25, 29).
		

References

  • S. Ainley, Mathematical Puzzles, Problem J8 p. 113, G. Bell & Sons Ltd, London (1977).

Crossrefs

A row of the triangle in A290451.

Programs

  • Mathematica
    m0 = 10 (* = initial max side *); okQ[{x_, y_, z_}] := x <= y <= z && (-x + y + z) (x + y - z) (x - y + z) (x + y + z) == 16 (x + y + z)^2; Clear[f];
    f[m_] := f[m] = Select[Tuples[Range[m], 3], okQ]; f[m = m0]; f[m = 2 m]; While[f[m] != f[m/2], m = 2 m]; sides = f[m]; Total /@ sides // Sort (* Jean-François Alcover, Jul 21 2017 *)

A289218 Areas of integer-sided triangles whose area equals twice their perimeter.

Original entry on oeis.org

84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 684, 1224
Offset: 1

Views

Author

Zhining Yang, Jun 28 2017

Keywords

Comments

There are no further terms.
One term, 168, corresponds to exactly two different triangles, namely [14, 30, 40] and [10, 35, 39], both with perimeter 84. The remaining terms correspond to unique triangles. - Jeppe Stig Nielsen, Mar 04 2020

Examples

			The areas 84,96,108,120,132, ... pertain respectively to triangles with sides (13,14,15), (12,16,20), (15,15,24), (10,24,26), (11,25,30), ..., equal twice their perimeter 42,48,54,60,66,...
		

Crossrefs

2nd row of the irregular triangle in A290451.
Cf. A332922.

Programs

  • Mathematica
    f[a_, b_, c_] := Block[{P = Total[{a, b, c}]/2}, Sqrt[P (P - a) (P - b) (P - c)]]; Sort@ Map[f @@ # &, Select[Union@ Map[Sort, Tuples[Range@ 200, {3}]], f @@ # == 4 Total@ # &] ] (* Michael De Vlieger, Jul 03 2017 *)

Extensions

Duplicate term 168 (previous a(9)) removed by Jeppe Stig Nielsen, Mar 04 2020

A289219 Areas of integer-sided triangles whose area equals 3 times their perimeter.

Original entry on oeis.org

192, 204, 210, 216, 240, 252, 264, 270, 324, 330, 336, 378, 384, 408, 420, 456, 462, 480, 504, 522, 540, 546, 624, 690, 714, 780, 792, 840, 876, 966, 990, 1176, 1248, 1320, 1380, 1806, 2394, 2460, 3120, 4446, 8436
Offset: 1

Views

Author

Zhining Yang, Jun 28 2017

Keywords

Comments

There are no further terms.
For a(3)=210, there are 2 solutions (20,21,29),(17,25,28);
For a(11)=336, there are 2 solutions (14,48,50),(24,35,53);
For a(16)=456, a(22)=546, there are 2 solutions respectively too.

Examples

			The areas 192,204,210,216,240, ... pertain respectively to triangles with sides (20,20,24), (17,25,26), (20,21,29), (18,24,30), (16,30,34), ..., equal 3 times their perimeter 64,68,70,72,80, ...
		

Crossrefs

A row of the triangle in A290451.

Programs

  • Mathematica
    f[a_, b_, c_] := Block[{P = Total[{a, b, c}]/2}, Sqrt[P (P - a) (P - b) (P - c)]]; Sort@ Map[f @@ # &, Select[Union@ Map[Sort, Tuples[Range@ 150, {3}]], f @@ # == 3 Total@# &] ] (* Michael De Vlieger, Jul 03 2017 *)

A289220 Areas of integer-sided triangles whose area equals 4 times their perimeter.

Original entry on oeis.org

336, 360, 384, 432, 456, 480, 528, 576, 624, 672, 720, 840, 960, 1056, 1176, 1200, 1224, 1296, 1584, 1680, 1944, 2064, 2088, 2184, 2328, 2520, 2736, 2856, 3240, 3696, 4440, 4488, 4896, 5256, 6600, 7728, 9240, 9360, 9384, 17688, 34320
Offset: 1

Views

Author

Zhining Yang, Jun 28 2017

Keywords

Comments

There are no further terms.
For a(10)=672, there are 2 solutions: (28,60,80), (20,70,78).
For a(12)=840, there are 3 solutions: (35,73,102), (25,84,101), (21,89,100).

Examples

			The areas 336,360,384,432,456, ... pertain respectively to triangles with sides (26,28,30), (25,29,36), (24,32,40), (30,30,48), (25,38,51), ..., equal 4 times their perimeter 84,90,96,108,114,...
		

Crossrefs

A row of the triangle in A290451.

Programs

  • Mathematica
    f[a_, b_, c_] := Block[{P = Total[{a, b, c}]/2}, Sqrt[P (P - a) (P - b) (P - c)]]; Sort@ Map[f @@ # &, Select[Union@ Map[Sort, Tuples[Range@ 200, {3}]], f @@ # == 4 Total@ # &] ] (* Michael De Vlieger, Jul 03 2017 *)

A289155 Smallest area of triangle with integer sides and area = n times perimeter.

Original entry on oeis.org

24, 84, 192, 336, 540, 756, 1134, 1344, 1710, 2100, 2640, 3000, 4056, 4116, 4680, 5376, 6936, 6804, 8664, 8400, 9240, 10164, 12696, 12000, 13500, 14196, 15390, 16296, 20184, 18720, 23064, 21504, 23232, 24276, 26040, 27000, 32856, 30324
Offset: 1

Views

Author

Zhining Yang, Jun 26 2017

Keywords

Examples

			For n = 4, a(4)=336 means for the smallest triangle (a,b,c) = (26,28,30), the area is 336, which is 4 times the perimeter 84.
		

Crossrefs

a(n) is the leading entry in row n of the triangle in A290451.

Programs

  • PARI
    for(k=1, 50, n=0;A=10^9; d=4*k^2; e=3*d; for(b=1, sqrt(e), for (c=2*k, e/b, if(b*c>d&&c>=b, f = (b + c)*d / (b * c - d); if(f>=c, a=floor(f); if(a==f, n++; s=2*(a+b+c)*k;if(s
    				

Formula

a(n) = A120572(2n). - Ray Chandler, Jul 27 2017

A289221 Areas of integer-sided triangles whose area equals 5 times their perimeter.

Original entry on oeis.org

540, 600, 630, 660, 750, 810, 840, 900, 930, 1050, 1080, 1320, 1380, 1500, 1560, 1590, 1740, 2040, 2070, 2280, 2310, 2520, 2580, 2970, 3150, 3240, 3720, 4020, 4350, 4530, 4620, 5460, 6270, 6300, 7260, 7560, 7800, 7980, 11730, 12210, 14040, 18870, 22260, 27030, 27300, 52530, 103020
Offset: 1

Views

Author

Zhining Yang, Jun 28 2017

Keywords

Comments

There are no further terms.

Examples

			The areas 540,600,630,660,750, ... pertain respectively to triangles with sides (30,39,39), (30,40,50), (28,45,53), (26,51,55), (25,60,65)...., equal 5 times their perimeter 108,120,126,132,150,...
		

Crossrefs

A row of the triangle in A290451.

A289253 Areas of integer-sided triangles whose area equals 7 times their perimeter.

Original entry on oeis.org

1134, 1176, 1344, 1386, 1470, 1596, 1680, 1764, 1848, 1890, 2016, 2058, 2184, 2310, 2394, 2520, 2604, 2856, 2940, 3024, 3360, 3696, 3780, 3864, 4032, 4242, 4368, 4536, 4830, 5292, 5544, 5712, 6006, 6090, 6216, 6258, 6510, 6636, 6720
Offset: 1

Views

Author

Zhining Yang, Jun 29 2017

Keywords

Examples

			The areas 1134,1176,1344,1386,1470, ... pertain respectively to triangles with sides (39,60,63), (42,56,70), (40,68,84), (36,77,85), (35,84,91)...., equal 7 times their perimeter 162,168,192,198,210,...
		

Crossrefs

A row of the triangle in A290451.
Cf. A332927 (listing distinct triangles with identical areas separately).

A332879 Areas of integer-sided triangles whose area equals 6 times their perimeter.

Original entry on oeis.org

756, 768, 780, 816, 840, 864, 924, 960, 972, 984, 1008, 1020, 1056, 1080, 1092, 1116, 1140, 1188, 1260, 1296, 1320, 1344, 1380, 1404, 1500, 1512, 1536, 1620, 1632, 1680, 1716, 1740, 1824, 1836, 1848, 1920, 1980, 2016, 2088, 2160, 2184, 2244, 2376, 2436, 2460
Offset: 1

Views

Author

Hugo Pfoertner, Mar 02 2020

Keywords

Crossrefs

6th row in A290451.
Cf. A332926 (listing distinct triangles with identical areas separately).

A332689 Number of distinct areas of integer-sided triangles whose area equals n times their perimeter.

Original entry on oeis.org

5, 17, 41, 41, 47, 127, 77, 81, 171, 132, 99, 283, 94, 205, 349, 158, 115, 457, 122, 296, 530, 267, 134, 546, 219, 260, 428, 471, 130, 953, 144, 264, 613, 332, 557, 1031, 139, 346, 614, 600, 162, 1381, 169, 562, 1132, 348, 186, 1000, 363, 593, 688, 571, 164, 1123
Offset: 1

Views

Author

Jeppe Stig Nielsen, Feb 19 2020

Keywords

Comments

Gives the row lengths of the irregular array A290451.

Examples

			For n = 2, there are 18 different (noncongruent) Heronian triangles whose area equals twice their perimeter, so A007237(2) = 18. However, two of those 18 triangles share the area 168. So there are only 17 distinct areas. Therefore, a(2) = 17.
		

Crossrefs

Programs

  • Mathematica
    a[k_] := Block[{v={},r,s,t}, Do[ If[r <= s && 4 k^2 < r s <= 12 k^2 && IntegerQ[t = 4 k^2 (r + s)/(r s - 4 k^2)] && t >= s, AppendTo[v, r + s + t]], {r, Floor[2 Sqrt[3] k]}, {s, Floor[4 k^2/r], Ceiling[12 k^2/r]}]; Length@ Union@ v]; Array[a, 20] (* Giovanni Resta, Mar 04 2020 *)
  • Python
    from math import sqrt
    def A332689(n):
        L = []; k = 4*n*n
        for x in range(1, int(2*sqrt(3)*n) + 1):
            for y in range(max(int(k/x) + 1, x), int((k + 2*n*sqrt(k + x*x))/x) + 1):
                if k*(x+y)%(x*y-k) == 0:
                    s = x + y + k*(x+y)//(x*y-k)
                    if s not in L: L.append(s)
        return len(L)  # Ya-Ping Lu, Dec 28 2023

Extensions

a(8)-a(54) from Giovanni Resta, Mar 04 2020

A348143 Areas of integer-sided cyclic quadrilaterals whose area equals their perimeter.

Original entry on oeis.org

16, 18, 20, 30
Offset: 1

Views

Author

Frank M Jackson, Oct 02 2021

Keywords

Comments

There are no further terms. Note that without the condition "integer-sided" there are other solutions, such as (1, 17/2, 17/2, 16) which has perimeter and area 34.

Examples

			The areas or perimeters 16, 18, 20, 30 pertain respectively to cyclic quadrilaterals with sides (4, 4, 4, 4), (3, 3, 6, 6), (2, 5, 5, 8), (5, 5, 6, 14).
		

Crossrefs

Cf. A098030, A290451. First four terms of A161874.

Programs

  • Mathematica
    lst={}; Do[s=(a+b+c+d)/2; If[s>a, (K=Sqrt[(s-a)(s-b)(s-c)(s-d)]; If[IntegerQ[K]&&K==2s, AppendTo[lst, Sort@{a,b,c,d}]])], {a, 1, 15}, {b, 1, a}, {c, 1, b}, {d, 1, c}]; lst
Showing 1-10 of 10 results.