cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098098 a(n) = sigma(6*n+5)/6.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 8, 9, 10, 14, 12, 16, 14, 15, 20, 17, 18, 19, 24, 26, 22, 23, 28, 25, 32, 32, 28, 29, 30, 38, 32, 33, 40, 40, 44, 42, 38, 39, 40, 57, 42, 43, 44, 45, 62, 47, 56, 49, 56, 62, 52, 53, 60, 64, 68, 64, 58, 59, 60, 74, 72, 70, 64, 65, 80, 67, 76, 80, 70, 93, 72
Offset: 0

Views

Author

Vladeta Jovovic, Sep 14 2004

Keywords

Comments

Euler transform of period 6 sequence [2, 0, 0, 0, 2, -4, ...].
Expansion of q^(-5/6) * (eta(q)^-1 * eta(q^2) * eta(q^3) * eta(q^6))^2 in powers of q. - Michael Somos, Sep 16 2004
2*a(n) is the number of bipartitions of 2*n+1 that are 3-cores. See Baruah and Nath. - Michel Marcus, Apr 13 2020

Examples

			G.f. =1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 8*x^5 + 7*x^6 + 8*x^7 + 9*x^8 + 10*x^9 + ...
G.f. = q^5 + 2*q^11 + 3*q^17 + 4*q^23 + 5*q^29 + 8*q^35 + 7*q^41 + 8*q^47 + 9*q^53 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0( 36), 2), 432)[6]; /* Michael Somos, Jul 09 2018 */
  • Mathematica
    Table[DivisorSigma[1, 6 n + 5]/6, {n, 0, 71}] (* Ivan Neretin, Apr 30 2016 *)
  • PARI
    a(n) = sigma(6*n + 5)/6
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x + A))^2, n))} /* Michael Somos, Sep 16 2004 */
    

Formula

G.f.: (Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(6*k)))^2. - Michael Somos, Sep 16 2004
From Michael Somos, Jul 09 2018: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A252650. -
Convolution square of A121444.
A232343(2*n) = (-1)^n * A258831(n) = A000203(6*n + 4) = a(n). A033686(2*n) = -A134079(2*n + 1) = 2 * a(n). A121443(6*n + 5) = A133739(6*n + 5) = A232356(6*n + 5) = A134077(3*n + 2) = 6 * a(n). A125514(6*n + 5) = 24 * a(n). A134078(6*n + 5) = -36 * a(n). A186100(6*n + 5) = -72 * a(n). (End)
From Amiram Eldar, Dec 16 2022: (Start)
a(n) = A000203(A016969(n))/6.
Sum_{k=1..n} a(k) = (Pi^2/18) * n^2 + O(n*log(n)). (End)