cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A361751 a(n) is the number of decimal digits in A098129(n) and A300517(n).

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 65, 87, 111, 137, 165, 195, 227, 261, 297, 335, 375, 417, 461, 507, 555, 605, 657, 711, 767, 825, 885, 947, 1011, 1077, 1145, 1215, 1287, 1361, 1437, 1515, 1595, 1677, 1761, 1847, 1935, 2025, 2117, 2211, 2307, 2405, 2505, 2607, 2711, 2817, 2925
Offset: 1

Views

Author

David Cleaver, Mar 23 2023

Keywords

Examples

			For n = 4, a(4) = 10, because A098129(4) = 1223334444.
For n = 10, a(10) = 65, because A098129(10) = 12233344445555566666677777778888888899999999910101010101010101010.
		

Crossrefs

Partial sums of A110803.

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n<1, 0, a(n-1)+n*length(n)) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 23 2023
  • PARI
    a(n) = {my(x=logint(n,10)+1);x*n*(n+1)/2 - ((100^x-1)/99 - (10^x-1)/9)/2}
    vector(100, i, a(i))
    
  • Python
    def a(n):
        d = len(str(n))
        m = 10**d
        return d*n*(n+1)//2 - ((m-11)*m + 10)//198
    print([a(n) for n in range(1, 55)]) # Michael S. Branicky, Mar 24 2023 modified Mar 29 2023
    
  • Python
    # faster for generating initial segment of sequence
    from itertools import count, islice
    def agen(s=0): yield from (s:=s+n*len(str(n)) for n in count(1))
    print(list(islice(agen(), 60))) # Michael S. Branicky, Mar 24 2023

Formula

a(n) = A055642(A098129(n)).
From Alois P. Heinz, Mar 23 2023: (Start)
a(n) = Sum_{j=1..n} j*A055642(j).
a(n) = Sum_{j=1..n} A110803(j). (End)
a(n) = Sum_{k=0..floor(log_10(n))} (n*(n+1) - 10^k*(10^k-1))/2. - Andrew Howroyd, Mar 24 2023
a(n) = k*n*(n+1)/2 - ((100^k-1)/99 - (10^k-1)/9)/2, where k = floor(log_10(n))+1. - David Cleaver, Mar 25 2023

A358275 Least prime factor of A098129(n).

Original entry on oeis.org

2, 71, 2, 5, 2, 1141871, 2, 3, 2, 58728589, 2, 3, 2, 5, 2, 3, 2, 277, 2, 4643, 2, 29, 2, 5, 2, 3, 2, 37, 2, 3, 2, 13, 2, 3, 2, 264439098646852541, 2, 7, 2, 53, 2, 7, 2, 3, 2, 587, 2, 3, 2, 45307, 2, 3, 2, 5, 2, 11, 2, 7, 2, 13, 2, 3, 2, 5, 2, 3, 2, 17, 2, 3, 2, 983, 2, 5, 2, 53, 2, 11
Offset: 2

Views

Author

David Cleaver, Mar 26 2023

Keywords

Examples

			a(3) = 71 because 71 is the smallest prime factor of A098129(3) = 122333.
a(7) = 1141871 because 1141871 is the smallest prime factor of A098129(7) = 1223334444555556666667777777.
		

Crossrefs

Programs

  • Python
    from sympy import primefactors
    def A358275(n): return min(primefactors(int(''.join(str(j)*j for j in range(1,n+1))))) if n&1 else 2 # Chai Wah Wu, Apr 15 2023

Formula

a(n) = A020639(A098129(n)).
a(n) = 2 if n is even. - Chai Wah Wu, Apr 15 2023

A300517 a(n) is the concatenation of n n times, n-1 n-1 times, ..., 22, 1.

Original entry on oeis.org

1, 221, 333221, 4444333221, 555554444333221, 666666555554444333221, 7777777666666555554444333221, 888888887777777666666555554444333221, 999999999888888887777777666666555554444333221, 10101010101010101010999999999888888887777777666666555554444333221
Offset: 1

Views

Author

Seiichi Manyama, Mar 07 2018

Keywords

Comments

a(n) is composite for all 2 <= n <= 1000. - David Cleaver, Apr 14 2023

Examples

			a(4) = 4444333221 because 4 concatenated four times then concatenated with 3 three times and 2 twice and 1 once gives 4444333221.
		

Crossrefs

Cf. A000461, A098129, A361751 (number of decimal digits).

Programs

  • Maple
    a:= n-> parse(cat(seq((n-i)$(n-i), i=0..n-1))):
    seq(a(n), n=1..12);  # Alois P. Heinz, Mar 07 2018
  • PARI
    a(n) = {my(a=0, b=0, d=1, i);
      for(i=1, n, b = logint(i, 10)+1;
        a += d*i*(10^(i*b)-1)/(10^b-1);
        d *= 10^(i*b); ); return(a); } \\ David Cleaver, Apr 14 2023
  • Ruby
    def A300517(n)
      a = '1'
      [1] + (2..n).map{|i| a = (i.to_s * i + a.to_s).to_i}
    end
    p A300517(20)
    

A300557 a(n) is the concatenation 1 written in base 2 once, 2 written in base 2 twice, ..., n written in base 2 n times.

Original entry on oeis.org

1, 11010, 11010111111, 11010111111100100100100, 11010111111100100100100101101101101101, 11010111111100100100100101101101101101110110110110110110, 11010111111100100100100101101101101101110110110110110110111111111111111111111
Offset: 1

Views

Author

Seiichi Manyama, Mar 08 2018

Keywords

Crossrefs

A105310 a(n) = concatenation of i n times, with i = 1 to n.

Original entry on oeis.org

1, 1122, 111222333, 1111222233334444, 1111122222333334444455555, 111111222222333333444444555555666666, 1111111222222233333334444444555555566666667777777
Offset: 21

Views

Author

Alexandre Wajnberg, Apr 25 2005

Keywords

Examples

			a(10)=concatenation of (1^10)(2^10)(3^10)...(9^10)(10^10)
		

References

  • F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.

Crossrefs

A105311 a(n) = n concatenations of numbers from 1 to n, concatenated.

Original entry on oeis.org

1, 1212, 123123123, 1234123412341234, 1234512345123451234512345, 123456123456123456123456123456123456, 1234567123456712345671234567123456712345671234567, 1234567812345678123456781234567812345678123456781234567812345678, 123456789123456789123456789123456789123456789123456789123456789123456789123456789
Offset: 1

Views

Author

Alexandre Wajnberg, Apr 25 2005

Keywords

References

  • F. Smarandache, "Properties of the numbers", Univ. of Craiova Archives, 1975; Arizona State University Special Collections, Tempe, AZ.

Crossrefs

Extensions

a(5) corrected and more terms from Georg Fischer, Nov 13 2024

A323426 a(n) = decimal concatenation of n (once), n-1 (twice), n-2 (3 times), ..., 1 (n times).

Original entry on oeis.org

1, 211, 322111, 4332221111, 544333222211111, 655444333322222111111, 7665554444333332222221111111, 877666555544444333333222222211111111
Offset: 1

Views

Author

Eder Vanzei, Aug 30 2019

Keywords

Comments

a(2), a(3) and a(4) are primes.

Crossrefs

Cf. A098129.
Showing 1-7 of 7 results.