A098132 Number of compositions of n where the smallest part is greater than the number of parts.
0, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 42, 51, 62, 76, 94, 117, 146, 182, 226, 279, 342, 416, 503, 606, 729, 877, 1056, 1273, 1536, 1854, 2237, 2696, 3243, 3891, 4655, 5553, 6607, 7844, 9297, 11006, 13019, 15393, 18195, 21503, 25407, 30010
Offset: 1
Examples
a(11)=7 because we have: 11, 8+3, 3+8, 7+4, 4+7, 6+5 and 5+6.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
- Hùng Việt Chu, Nurettin Irmak, Steven J. Miller, László Szalay, and Sindy Xin Zhang, Schreier Multisets and the s-step Fibonacci Sequences, arXiv:2304.05409 [math.CO], 2023. See also Integers (2024) Vol. 24A, Art. No. A7, p. 4.
Programs
-
Maple
G:=sum(x^(k^2+k)/(1-x)^k,k=0..20): Gser:=series(G,x=0,67): seq(coeff(Gser,x^n),n=1..65); # Emeric Deutsch, Mar 29 2005
-
Mathematica
nmax = 60; Rest[CoefficientList[Series[Sum[x^(k*(k+1))/(1-x)^k, {k, 1, Sqrt[nmax] + 1}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 11 2018 *)
Formula
G.f.: Sum_{n>=0} x^(n*(n+1)) / (1-x)^n.
Extensions
More terms from Emeric Deutsch, Mar 29 2005