cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098149 a(0)=-1, a(1)=-1, a(n)=-3*a(n-1)-a(n-2) for n>1.

Original entry on oeis.org

-1, -1, 4, -11, 29, -76, 199, -521, 1364, -3571, 9349, -24476, 64079, -167761, 439204, -1149851, 3010349, -7881196, 20633239, -54018521, 141422324, -370248451, 969323029, -2537720636, 6643838879, -17393796001, 45537549124, -119218851371
Offset: 0

Views

Author

Creighton Dement, Aug 29 2004

Keywords

Comments

Sequence relates bisections of Lucas and Fibonacci numbers.
2*a(n) + A098150(n) = 8*(-1)^(n+1)*A001519(n) - (-1)^(n+1)*A005248(n+1). Apparently, if (z(n)) is any sequence of integers (not all zero) satisfying the formula z(n) = 2(z(n-2) - z(n-1)) + z(n-3) then |z(n+1)/z(n)| -> golden ratio phi + 1 = (3+sqrt(5))/2.
Pisano period lengths: 1, 3, 4, 6, 1, 12, 8, 6, 12, 3, 10, 12, 7, 24, 4, 12, 9, 12, 18, 6, ... . - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Oct 12 2020: (Start)
[X(n) = (-1)^n*(S(n, 3) + S(n-1, 3)), Y(n) = X(n-1)] gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 3*X*Y = +5, for n = -oo..+oo, with Chebyshev S polynomials (A049310), with S(-1, x) = 0, S(-|n|, x) = - S(|n|-2, x), for |n| >= 2, and S(n,-x) = (-1)^n*S(n, x). The present sequence is a(n) = -X(n-1), for n >= 0. See the formula section.
This binary indefinite quadratic form of discriminant 5, representing 5, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication) See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = -1; a[n_] := a[n] = -3a[n - 2] - a[n - 1]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Sep 01 2004 *)
    LinearRecurrence[{-3,-1},{-1,-1},30] (* Harvey P. Dale, Apr 19 2014 *)
    CoefficientList[Series[-(1 + 4 x)/(1 + 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)

Formula

G.f.: -(1+4*x)/(1+3*x+x^2). - Philippe Deléham, Nov 19 2006
a(n) = (-1)^n*A002878(n-1). - R. J. Mathar, Jan 30 2011
-a(n+1) = Sum_{k, 0<=k<=n}(-5)^k*Binomial(n+k, n-k) = Sum_{k, 0<=k<=n}(-5)^k*A085478(n, k). - Philippe Deléham, Nov 28 2006
a(n) = (-1)^n*(S(n-1, 3) + S(n-2, 3)) = (-1)^n*S(2*(n-1), sqrt(5)), for n >= 0, with Chebyshev S polynomials (A049310), with S(-1, x) = 0 and S(-2, x) = -1. S(n, 3) = A001906(n+1) = F(2*(n+1)), with F = A000045. - Wolfdieter Lang, Oct 12 2020

Extensions

Simpler definition from Philippe Deléham, Nov 19 2006

A167375 a(n)=3*a(n-1)-a(n-2) with a(0)=1, a(1)=3, a(2)=11.

Original entry on oeis.org

1, 3, 11, 30, 79, 207, 542, 1419, 3715, 9726, 25463, 66663, 174526, 456915, 1196219, 3131742, 8199007, 21465279, 56196830, 147125211, 385178803, 1008411198, 2640054791, 6911753175, 18095204734, 47373861027, 124026378347, 324705274014, 850089443695
Offset: 0

Views

Author

Jamel Ghanouchi, Nov 02 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,11]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jun 26 2014
  • Mathematica
    Join[{1},LinearRecurrence[{3,-1},{3,11},30]] (* Harvey P. Dale, Jun 25 2014 *)
    CoefficientList[Series[(3 x^2 + 1)/(1 - 3 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
    Table[3LucasL[2n+1]-Fibonacci[2n], {n,0,20}] (* Rigoberto Florez, Dec 24 2018 *)

Formula

a(n) = (-1)^n*A098150(n-1), n>0.
G.f.: (3*x^2+1)/(1-3*x+x^2).
a(n) = 3*L(2n+1)-F(2n), where F(n) is the n-th Fibonacci number and L(n) is the n-th Lucas number. - Rigoberto Florez, Dec 24 2018

Extensions

Edited by R. J. Mathar, Nov 03 2009
Showing 1-2 of 2 results.