cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098181 Two consecutive odd numbers separated by multiples of four, repeated twice, between them, written in increasing order.

Original entry on oeis.org

1, 3, 4, 4, 5, 7, 8, 8, 9, 11, 12, 12, 13, 15, 16, 16, 17, 19, 20, 20, 21, 23, 24, 24, 25, 27, 28, 28, 29, 31, 32, 32, 33, 35, 36, 36, 37, 39, 40, 40, 41, 43, 44, 44, 45, 47, 48, 48, 49, 51, 52, 52, 53, 55, 56, 56, 57, 59, 60, 60, 61, 63, 64, 64, 65, 67, 68, 68, 69, 71, 72, 72
Offset: 0

Views

Author

Paul Barry, Aug 30 2004

Keywords

Comments

Essentially partial sums of A007877.
a(n) is the number of odd coefficients of the q-binomial coefficient [n+2 choose 2]. (Easy to prove.) - Richard Stanley, Oct 12 2016

Examples

			G.f. = 1 + 3*x + 4*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 8*x^7 + 9*x^8 + ...
		

Crossrefs

Cf. A098180.

Programs

  • GAP
    a:=[1,3,4,4];; for n in [5..80] do a[n]:=2*a[n-1]-2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, May 22 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x)/((1-x)^2*(1+x^2)) )); // G. C. Greubel, May 22 2019
    
  • Maple
    A:=seq((2*n+3 - cos(Pi*n/2) + sin(Pi*n/2))/2, n=0..50); \\ Bernard Schott, Jun 07 2019
  • Mathematica
    Table[Floor[Binomial[n+3, 2]/2] -Floor[Binomial[n+1, 2]/2], {n, 0, 80}] (* or *) CoefficientList[Series[(1+x)/((1-x)^2*(1+x^2)), {x, 0, 80}], x] (* Michael De Vlieger, Oct 12 2016 *)
  • PARI
    {a(n) = n\4*4 + [1, 3, 4, 4][n%4+1]}; /* Michael Somos, Sep 11 2014 */
    
  • Sage
    ((1+x)/((1-x)^2*(1+x^2))).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, May 22 2019
    

Formula

G.f.: (1+x)/((1-x)^2*(1+x^2)).
a(n) = ( (2*n+3) - cos(Pi*n/2) + sin(Pi*n/2) )/2.
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4).
a(n) = floor(C(n+3, 2)/2)-floor(C(n+1, 2)/2). - Paul Barry, Jan 01 2005
a(4*n) = 4*n+1, a(4*n+1) = 4*n+3, a(4*n+2) = a(4*n+3) = 4*n+4. - Philippe Deléham, Apr 06 2007
Euler transform of length 4 sequence [ 3, -2, 0, 1]. - Michael Somos, Sep 11 2014
a(-3-n) = -a(n) for all n in Z. - Michael Somos, Sep 11 2014
a(n) = log_2(|A174882(n+2)|). [Barry] - R. J. Mathar, Aug 18 2017
a(n) = (2*n+3 - (-1)^ceiling(n/2))/2. - Wesley Ivan Hurt, Sep 29 2017

Extensions

Name edited by G. C. Greubel, Jun 06 2019