A098181 Two consecutive odd numbers separated by multiples of four, repeated twice, between them, written in increasing order.
1, 3, 4, 4, 5, 7, 8, 8, 9, 11, 12, 12, 13, 15, 16, 16, 17, 19, 20, 20, 21, 23, 24, 24, 25, 27, 28, 28, 29, 31, 32, 32, 33, 35, 36, 36, 37, 39, 40, 40, 41, 43, 44, 44, 45, 47, 48, 48, 49, 51, 52, 52, 53, 55, 56, 56, 57, 59, 60, 60, 61, 63, 64, 64, 65, 67, 68, 68, 69, 71, 72, 72
Offset: 0
Examples
G.f. = 1 + 3*x + 4*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 8*x^7 + 9*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- P. Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011) # 11.4.5.
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Crossrefs
Cf. A098180.
Programs
-
GAP
a:=[1,3,4,4];; for n in [5..80] do a[n]:=2*a[n-1]-2*a[n-2]+2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, May 22 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x)/((1-x)^2*(1+x^2)) )); // G. C. Greubel, May 22 2019 -
Maple
A:=seq((2*n+3 - cos(Pi*n/2) + sin(Pi*n/2))/2, n=0..50); \\ Bernard Schott, Jun 07 2019
-
Mathematica
Table[Floor[Binomial[n+3, 2]/2] -Floor[Binomial[n+1, 2]/2], {n, 0, 80}] (* or *) CoefficientList[Series[(1+x)/((1-x)^2*(1+x^2)), {x, 0, 80}], x] (* Michael De Vlieger, Oct 12 2016 *)
-
PARI
{a(n) = n\4*4 + [1, 3, 4, 4][n%4+1]}; /* Michael Somos, Sep 11 2014 */
-
Sage
((1+x)/((1-x)^2*(1+x^2))).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, May 22 2019
Formula
G.f.: (1+x)/((1-x)^2*(1+x^2)).
a(n) = ( (2*n+3) - cos(Pi*n/2) + sin(Pi*n/2) )/2.
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4).
a(n) = floor(C(n+3, 2)/2)-floor(C(n+1, 2)/2). - Paul Barry, Jan 01 2005
a(4*n) = 4*n+1, a(4*n+1) = 4*n+3, a(4*n+2) = a(4*n+3) = 4*n+4. - Philippe Deléham, Apr 06 2007
Euler transform of length 4 sequence [ 3, -2, 0, 1]. - Michael Somos, Sep 11 2014
a(-3-n) = -a(n) for all n in Z. - Michael Somos, Sep 11 2014
a(n) = log_2(|A174882(n+2)|). [Barry] - R. J. Mathar, Aug 18 2017
a(n) = (2*n+3 - (-1)^ceiling(n/2))/2. - Wesley Ivan Hurt, Sep 29 2017
Extensions
Name edited by G. C. Greubel, Jun 06 2019
Comments