cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098245 Chebyshev polynomials S(n,227).

Original entry on oeis.org

1, 227, 51528, 11696629, 2655083255, 602692202256, 136808474828857, 31054921093948283, 7049330279851431384, 1600166918605180975885, 363230841193096230094511, 82451800783914239050478112
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

Used for all positive integer solutions of Pell equation x^2 - 229*y^2 = -4. See A098246 with A098247.

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - 227*x + x^2), {x, 0, 15}], x] (* Wesley Ivan Hurt, Feb 09 2017 *)
    LinearRecurrence[{227,-1},{1,227},20] (* Harvey P. Dale, Jan 15 2019 *)

Formula

a(n) = S(n, 227) = U(n, 227/2) = S(2*n+1, sqrt(229))/sqrt(229) with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x).
a(n) = 227*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=227; a(-1):=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap := (227+15*sqrt(229))/2 and am := (227-15*sqrt(229))/2 = 1/ap.
G.f.: 1/(1-227*x+x^2).