cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A098247 First differences of Chebyshev polynomials S(n,227)=A098245(n) with Diophantine property.

Original entry on oeis.org

1, 226, 51301, 11645101, 2643386626, 600037119001, 136205782626601, 30918112619119426, 7018275358757483101, 1593117588325329544501, 361630674274491049118626, 82088569942721142820383601
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(15*b(n))^2 - 229*a(n)^2 = -4 with b(n)=A098246(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 229*y^2 = -4 are (15=15*1,1), (3420=15*228,226), (776325=15*51755,51301), (176222355=15*11748157,11645101), ...
		

Programs

  • GAP
    a:=[1,226];; for n in [3..20] do a[n]:=227*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,226]; [n le 2 select I[n] else 227*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{227,-1}, {1,226}, 20] (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-227*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-227*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = S(n, 227) - S(n-1, 227) = T(2*n+1, sqrt(229)/2)/(sqrt(229)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the second kind, A053120.
a(n) = ((-1)^n)*S(2*n, 15*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials.
G.f.: (1-x)/(1-227*x+x^2).
a(n) = 227*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=226. - Philippe Deléham, Nov 18 2008

A154597 a(n) = 15*a(n-1) + a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 15, 226, 3405, 51301, 772920, 11645101, 175449435, 2643386626, 39826248825, 600037119001, 9040383033840, 136205782626601, 2052127122432855, 30918112619119426, 465823816409224245, 7018275358757483101, 105739954197771470760, 1593117588325329544501
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009

Keywords

Comments

Limit_{n -> infinity} a(n)/a(n-1) = (15 + sqrt(229))/2. - Klaus Brockhaus, Oct 07 2009
For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 15's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n - 1 on alphabet {0,1,...,15} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Apr 30 2023: (Start)
Also called the 15-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 15 kinds of squares available. (End)

Crossrefs

Row n=15 of A073133, A172236 and A352361 and column k=15 of A157103.
First bisection is A098247.
Cf. A166125 (decimal expansion of sqrt(229)), A166126 (decimal expansion of (15 + sqrt(229))/2).
Cf. also A041427, A090301, A098245.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), this sequence (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-229); S:=[ ((15+r)^n-(15-r)^n)/(2^n*r): n in [1..17] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
    
  • Magma
    [n le 2 select n-1 else 15*Self(n-1) +Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 20 2024
    
  • Mathematica
    LinearRecurrence[{15,1}, {0,1}, 31] (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)
    CoefficientList[Series[x/(1-15*x-x^2), {x,0,50}], x] (* G. C. Greubel, Apr 16 2017 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x/(1-15*x-x^2))) \\ G. C. Greubel, Apr 16 2017
    
  • SageMath
    def A154597(n): return (-i)^(n-1)*chebyshev_U(n-1, 15*i/2)
    [A154597(n) for n in range(31)] # G. C. Greubel, Sep 20 2024

Formula

G.f.: x/(1 - 15*x - x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 07 2009
a(n) = ((15 + sqrt(229))^n - (15 - sqrt(229))^n)/(2^n*sqrt(229)).
From Johannes W. Meijer, Jun 12 2010: (Start)
Limit_{k -> infinity} a(n+k)/a(k) = (A090301(n) + a(n)*sqrt(229))/2.
Limit_{n -> infinity} A090301(n)/a(n) = sqrt(229).
a(2n+1) = 15*A098245(n-1).
a(3n+1) = A041427(5n), a(3n+2) = A041427(5n+3), a(3n+3) = 2*A041427(5n+4). (End)
E.g.f.: (2/sqrt(229))*exp(15*x/2)*sinh(sqrt(229)*x/2). - G. C. Greubel, Sep 20 2024

Extensions

Extended beyond a(7) by Klaus Brockhaus and Philippe Deléham, Jan 12 2009
Name from Philippe Deléham, Jan 12 2009
Edited by Klaus Brockhaus, Oct 07 2009
Missing a(0) added by Jianing Song, Jan 29 2019

A098246 Chebyshev polynomials S(n,227) + S(n-1,227) with Diophantine property.

Original entry on oeis.org

1, 228, 51755, 11748157, 2666779884, 605347285511, 137411167031113, 31191729568777140, 7080385200945379667, 1607216248885032407269, 364831008111701411070396, 82815031625107335280572623
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(15*a(n))^2 - 229*b(n)^2 = -4 with b(n)=A098247(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 229*y^2 = -4 are (15=15*1,1), (3420=15*228,226), (776325=15*51755,51301), (176222355=15*11748157,11645101), ...
		

Programs

  • Mathematica
    LinearRecurrence[{227,-1},{1,228},20] (* Harvey P. Dale, May 29 2014 *)

Formula

a(n) = S(n, 227) + S(n-1, 227) = S(2*n, sqrt(229)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x) = 0 = U(-1, x). S(n, 227)=A098245(n).
a(n) = (-2/15)*i*((-1)^n)*T(2*n+1, 15*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-227*x+x^2).
a(n) = 227*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=228. [Philippe Deléham, Nov 18 2008]

A098249 Chebyshev polynomials S(n,291) + S(n-1,291) with Diophantine property.

Original entry on oeis.org

1, 292, 84971, 24726269, 7195259308, 2093795732359, 609287362857161, 177300528795701492, 51593844592186277011, 15013631475797410908709, 4368915165612454388157308, 1271339299561748429542867919
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

(17*a(n))^2 - 293*b(n)^2 = -4 with b(n)=A098250(n) give all positive solutions of this Pell equation.

Examples

			All positive solutions of Pell equation x^2 - 293*y^2 = -4 are (17=17*1,1), (4964=17*292,290), (1444507=17*84971,84389), (420346573=17*24726269,24556909), ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{291,-1},{1,292},20] (* Harvey P. Dale, Jan 01 2020 *)

Formula

a(n) = (-2/17)*i*((-1)^n)*T(2*n+1, 17*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-291*x+x^2).
a(n) = S(n, 291) + S(n-1, 291) = S(2*n, sqrt(293)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). S(n, 227)=A098245(n).
a(n) = 291*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=292. [Philippe Deléham, Nov 18 2008]
Showing 1-4 of 4 results.