cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098316 Decimal expansion of [3, 3, ...] = (3 + sqrt(13))/2.

Original entry on oeis.org

3, 3, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8, 8, 3
Offset: 1

Views

Author

Eric W. Weisstein, Sep 02 2004

Keywords

Comments

For reasons following from the formula section, this constant could be called "the bronze ratio". For this, compare with A001622 and A014176.
If c is this constant and n > 0, then for n even, c^n = [A100230(n), 1, A100230(n)-1, 1, A100230(n)-1, 1, A100230(n)-1, 1, ...], for n odd, c^n = [A100230(n)+1, A100230(n)+1, A100230(n)+1, ...]. - Gerald McGarvey, Dec 15 2007
This is the shape of a 3-extension rectangle; see A188640 for definitions. - Clark Kimberling, Apr 10 2011
From Vladimir Shevelev, Mar 02 2013: (Start)
An analog of Fermat theorem: for prime p, round(c^p) == 3 (mod p).
A generalization for "metallic" constants c_N = (N+sqrt(N^2+4))/2, N>=1: for prime p, round((c_N)^p) == N (mod p). (End)
This is the positive real algebraic number c of degree 2 with minimal polynomial x^3 - x - 1. The other negative root is 3 - c. - Wolfdieter Lang, Aug 29 2022
c^n = c*A006190(n) + A006190(n-1). - Gary W. Adamson, Apr 02 2024

Examples

			3.30277563...
		

Crossrefs

Programs

Formula

3 plus the constant in A085550. - R. J. Mathar, Sep 02 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
Set c:=(3+sqrt(13))/2. Then the fractional part of c^n equals 1/c^n, if n odd. For even n, the fractional part of c^n is equal to 1-(1/c^n).
c:=(3+sqrt(13))/2 satisfies c-c^(-1)=floor(c)=3, hence c^n + (-c)^(-n) = round(c^n) for n>0, which follows from the general formula of A001622.
1/c=(sqrt(13)-3)/2.
See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x).
Other examples of constants x satisfying the relation x-x^(-1)=floor(x) include A001622 (the golden ratio: where floor(x)=1) and A014176 (the silver ratio: where floor(x)=2). (End)
c=3+sum{k>=1}(-1)^(k-1)/(A006190(k)*A006190(k+1)). - Vladimir Shevelev, Feb 23 2013
A generalization for "metallic" constants c_N = (N+sqrt(N^2+4))/2, N>=1. Let {A_N(n), n>=0} be the sequence 0, 1, N, N^2+1, N^3+2*N, N^4+3*N^2+1,..., a(N) = N*a(N-1) + a(N-2). Then c_N = N + sum_{n>=1} (-1)^(n-1)/(A_N(n)*A_N(n+1)) (cf. A001622, A014176, A098316, A098317, A098318). - Vladimir Shevelev, Feb 23 2013
Equals lim_{n->oo} S(n, sqrt(13))/S(n-1, sqrt(13)), with the S-Chebyshev polynomial (see A049310). - Wolfdieter Lang, Nov 15 2023