cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098341 Expansion of 1/sqrt(1 - 6*x + 25*x^2).

Original entry on oeis.org

1, 3, 1, -45, -255, -477, 2689, 25203, 82945, -90045, -2379519, -11581677, -12063999, 197669475, 1423716225, 3645266355, -12180238335, -156702949245, -626511576575, 51239061075, 15179398450945, 87687927568035, 151934475887745
Offset: 0

Views

Author

Paul Barry, Sep 03 2004

Keywords

Comments

Central coefficients of (1 + 3*x - 4*x^2)^n.
(-1)^n*a(n) is the sum of squares of coefficients of (1+2*i*x)^n where i=sqrt(-1) (see PARI code). - Joerg Arndt, Jul 06 2011
Binomial transform of A098337.
Second binomial transform of A098334.

Crossrefs

Programs

  • Mathematica
    Table[(-5)^n*LegendreP[n,-3/5],{n,0,20}] (* Vaclav Kotesovec, Jul 23 2013 *)
    CoefficientList[Series[1/Sqrt[1-6x+25x^2],{x,0,30}],x] (* Harvey P. Dale, Aug 22 2014 *)
  • PARI
    a(n)={local(v=Vec((1+2*I*x)^n)); (-1)^n*sum(k=1,#v,v[k]^2);} /* Joerg Arndt, Jul 06 2011 */
    
  • PARI
    a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])^2-imag(v[k])^2);} /* Joerg Arndt, Jul 06 2011 */
    
  • Sage
    A098341 = lambda n: (-1)^n*hypergeometric([-n,-n], [1], -4)
    [Integer(A098341(n).n(100)) for n in (0..22)] # Peter Luschny, Sep 23 2014

Formula

E.g.f.: exp(3*x)*BesselI(0, 4*I*x), I=sqrt(-1).
a(n) = (-1)^n*Sum_{k=0..n} binomial(n, k)^2*(-4)^k.
a(n) = (-1)^n*hypergeometric([-n,-n], [1], -4). - Peter Luschny, Sep 23 2014
D-finite with recurrence: n*a(n) +3*(-2*n+1)*a(n-1) +25*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 27 2014
From Peter Bala, Nov 28 2021: (Start)
a(n) = (5^n)*P(n,3/5), where P(n,x) is the n-th Legendre polynomial.
a(n) = [x^n] ((1 - x)*(1 + 4*x))^n.
a(n) = 5^(2*n+1)*Sum_{k >= n} (-1)^(n+k)*binomial(k,n)^2*(1/4)^(k+1).
a(n) = (5/4)*(25/4)^n*hypergeom([n+1, n+1], [1], -1/4). (End)