cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A098332 Expansion of 1/sqrt(1 - 2*x + 9*x^2).

Original entry on oeis.org

1, 1, -3, -11, 1, 81, 141, -363, -1791, -479, 13597, 29877, -54911, -353807, -223443, 2539989, 6806529, -8302527, -73999299, -73313931, 489731841, 1584548241, -1110170163, -15812965611, -21391839999, 94696016481
Offset: 0

Views

Author

Paul Barry, Sep 03 2004

Keywords

Comments

Central coefficients of (1 + x - 2*x^2)^n.
Binomial transform of 1/sqrt(1+8*x^2), or (1,0,-4,0,24,0,...).
Binomial transform is A098336.

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, ex. 7.56, p. 575.

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2-n/2, -n/2], [1], -8);
    seq(round(evalf(a(n),99)),n=0..30); # Peter Luschny, Sep 18 2014
  • Mathematica
    Table[(-3)^n*LegendreP[n,-1/3],{n,0,20}] (* Vaclav Kotesovec, Jul 23 2013 *)
    CoefficientList[Series[1/Sqrt[1 - 2*x + 9*x^2], {x,0,50}], x] (* G. C. Greubel, Feb 18 2017 *)
  • PARI
    x='x+O('x^25); Vec(1/sqrt(1 - 2*x + 9*x^2)) \\ G. C. Greubel, Feb 18 2017

Formula

E.g.f.: exp(x)*BesselI(0, 2*sqrt(-2)*x);
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * binomial(2*k,k) * (-2)^k.
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(n-k,k) * (-2)^k.
a(n) = (-1)^n * Sum_{k=0..n} binomial(n,k)^2 * (-2)^k.
G.f.: A(x) = 1/(2*T(0)+3*x-1) where T(k) = 1 - 2*x/(1 + x/T(k+1)); (continued fraction, 2-step ). - Sergei N. Gladkovskii, Aug 23 2012
D-finite with recurrence: a(n+2) = ((2*n+3)*a(n+1))/(n+2) - (9*(n+1)*a(n))/(n+2) with a(0)=1, a(1)=1. (See Graham, Knuth, and Patashnik). - Alexander R. Povolotsky, Aug 23 2012
a(n) = hypergeom([1/2-n/2, -n/2], [1], -8). - Peter Luschny, Sep 18 2014
a(n) = (3/2)*(9/2)^n*Sum_{k >= 0} (-1/2)^k*binomial(n+k,k)^2. - Peter Bala, Mar 02 2017

A307884 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 + 2*(k-1)*x + ((k+1)*x)^2).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, -2, 1, 1, -2, -3, 0, 1, 1, -3, -2, 11, 6, 1, 1, -4, 1, 28, 1, 0, 1, 1, -5, 6, 45, -74, -81, -20, 1, 1, -6, 13, 56, -255, -92, 141, 0, 1, 1, -7, 22, 55, -554, 477, 1324, 363, 70, 1, 1, -8, 33, 36, -959, 2376, 2689, -3656, -1791, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, May 02 2019

Keywords

Comments

Column k is the diagonal of the rational function 1 / ((1-x)*(1-y) + k*x*y). - Seiichi Manyama, Jul 11 2020
More generally, column k is the diagonal of the rational function r / ((1-r*x)*(1-r*y) + r-1 + (k-r+1)*r*x*y) for any nonzero real number r. - Seiichi Manyama, Jul 22 2020

Examples

			Square array begins:
  1,   1,   1,    1,    1,    1,      1, ...
  1,   0,  -1,   -2,   -3,   -4,     -5, ...
  1,  -2,  -3,   -2,    1,    6,     13, ...
  1,   0,  11,   28,   45,   56,     55, ...
  1,   6,   1,  -74, -255, -554,   -959, ...
  1,   0, -81,  -92,  477, 2376,   6475, ...
  1, -20, 141, 1324, 2689, -804, -20195, ...
		

Crossrefs

Columns k=2..4 give (-1)^n * A098332, A116091, (-1)^n * A098341.
Main diagonal gives A307885.
T(n,n-1) gives A335310.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)

Formula

T(n,k) is the coefficient of x^n in the expansion of (1 - (k-1)*x - k*x^2)^n.
T(n,k) = Sum_{j=0..n} (-k)^j * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} (-k-1)^(n-j) * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = -(k-1) * (2*n-1) * T(n-1,k) - (k+1)^2 * (n-1) * T(n-2,k).
Showing 1-2 of 2 results.