A098331
Expansion of 1/sqrt(1 - 2*x + 5*x^2).
Original entry on oeis.org
1, 1, -1, -5, -5, 11, 41, 29, -125, -365, -131, 1409, 3301, -155, -15625, -29485, 16115, 170035, 254525, -309775, -1813055, -2064655, 4617755, 18909175, 14903725, -61552739, -192390589, -81290561, 767919595, 1901796395, 28588201
Offset: 0
-
A098331 := n -> hypergeom([-n/2, 1/2-n/2], [1], -4);
seq(round(evalf(A098331(n),99)),n=0..30); # Peter Luschny, Sep 18 2014
f:= gfun:-rectoproc({(5*n+5)*a(n)+(-3-2*n)*a(n+1)+(n+2)*a(n+2), a(0) = 1, a(1) = 1},a(n),remember):
map(f, [$0..50]); # Robert Israel, Jan 30 2018
-
a=b=1; Join[{a, b}, Table[c=((2n-1)b-5(n-1)a)/n; a=b; b=c; c, {n, 2, 30}]] (Noe)
CoefficientList[Series[1/Sqrt[1-2x+5x^2],{x,0,40}],x] (* Harvey P. Dale, Aug 17 2015 *)
-
my(x='x+O('x^99)); Vec(1/(1-2*x+5*x^2)^(1/2)) \\ Altug Alkan, Mar 18 2018
A116091
Expansion of 1/sqrt(1+4*x+16*x^2).
Original entry on oeis.org
1, -2, -2, 28, -74, -92, 1324, -3656, -4826, 70228, -197372, -267896, 3921724, -11126936, -15347432, 225505648, -643622906, -897078476, 13214495764, -37869162392, -53170602284, 784672445368, -2255295815192, -3183829452272, 47051201187676, -135537088268792, -192142210448216
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(1+4*x+16*x^2) )); // G. C. Greubel, May 09 2019
-
a := n -> (-4)^n*hypergeom([-n,1+n],[1],1/4);
seq(simplify(a(n)), n=0..26); # Peter Luschny, May 09 2016
-
Table[4^n*LegendreP[n,-1/2],{n,0,30}] (* Vaclav Kotesovec, Jul 23 2013 *)
CoefficientList[Series[1/Sqrt[1+4x+16x^2],{x,0,30}],x] (* Harvey P. Dale, Jun 08 2015 *)
-
Vec(1/sqrt(1+4*x+16*x^2+O(x^30))) \\ M. F. Hasler, Aug 25 2012
-
(1/sqrt(1+4*x+16*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
A307884
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 + 2*(k-1)*x + ((k+1)*x)^2).
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -2, 1, 1, -2, -3, 0, 1, 1, -3, -2, 11, 6, 1, 1, -4, 1, 28, 1, 0, 1, 1, -5, 6, 45, -74, -81, -20, 1, 1, -6, 13, 56, -255, -92, 141, 0, 1, 1, -7, 22, 55, -554, 477, 1324, 363, 70, 1, 1, -8, 33, 36, -959, 2376, 2689, -3656, -1791, 0, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -2, -3, -2, 1, 6, 13, ...
1, 0, 11, 28, 45, 56, 55, ...
1, 6, 1, -74, -255, -554, -959, ...
1, 0, -81, -92, 477, 2376, 6475, ...
1, -20, 141, 1324, 2689, -804, -20195, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A012000
Expansion of 1/sqrt(1 - 4*x + 16*x^2).
Original entry on oeis.org
1, 2, -2, -28, -74, 92, 1324, 3656, -4826, -70228, -197372, 267896, 3921724, 11126936, -15347432, -225505648, -643622906, 897078476, 13214495764, 37869162392, -53170602284, -784672445368, -2255295815192, 3183829452272, 47051201187676, 135537088268792, -192142210448216
Offset: 0
G.f. = 1 + 2*x - 2*x^2 - 28*x^3 - 74*x^4 + 92*x^5 + 1324*x^6 + 3656*x^7 + ...
- T. D. Noe, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
a := n -> 4^n*hypergeom([-n,1+n],[1],1/4);
seq(simplify(a(n)),n=0..26); # Peter Luschny, May 09 2016
-
Table[ 2^(2n) LegendreP[ n, 1/2 ], {n, 12} ]
-
{a(n) = 2^(2*n) * subst( pollegendre(n), x, 1/2)} /* Michael Somos, Dec 03 2001 */
-
a(n) = polcoeff(((1 - x)*(1 + 3*x))^n, n); \\ Michel Marcus, Aug 16 2015
A098333
Expansion of 1/sqrt(1 - 2x + 13x^2).
Original entry on oeis.org
1, 1, -5, -17, 19, 211, 181, -2015, -5837, 12259, 91585, 29965, -1033955, -2347955, 7953115, 43864543, -11941037, -559875245, -942036911, 5060812717, 21502740649, -20676139991, -307241918945, -344022187613
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
a := n -> hypergeom([1/2 - n/2, -n/2], [1], -12):
seq(simplify(a(n)), n=0..23); # Peter Luschny, Mar 19 2018
-
CoefficientList[Series[1/Sqrt[1-2*x+13*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2014 *)
-
x='x+O('x^99); Vec(1/(1-2*x+13*x^2)^(1/2)) \\ Altug Alkan, Mar 18 2018
A098334
Expansion of 1/sqrt(1-2x+17x^2).
Original entry on oeis.org
1, 1, -7, -23, 49, 401, 41, -5767, -11423, 65569, 299353, -441847, -5511791, -3665999, 79937417, 212712857, -861871423, -5076450239, 3966949049, 89482678313, 110424995569, -1233175514671, -4202194115863, 11830822055353, 91629438996001, -13485315511199
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
a := n -> hypergeom([-n/2, 1/2-n/2], [1], -16);
seq(round(evalf(a(n),99)), n=0..28); # Peter Luschny, Sep 18 2014
-
CoefficientList[Series[1/Sqrt[1-2*x+17*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2014 *)
-
x='x+O('x^99); Vec(1/(1-2*x+17*x^2)^(1/2)) \\ Altug Alkan, Mar 18 2018
A307860
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1+4*k)*x^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -3, -5, 1, 1, 1, -5, -11, -5, 1, 1, 1, -7, -17, 1, 11, 1, 1, 1, -9, -23, 19, 81, 41, 1, 1, 1, -11, -29, 49, 211, 141, 29, 1, 1, 1, -13, -35, 91, 401, 181, -363, -125, 1, 1, 1, -15, -41, 145, 651, 41, -2015, -1791, -365, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, -1, -3, -5, -7, -9, -11, ...
1, -5, -11, -17, -23, -29, -35, ...
1, -5, 1, 19, 49, 91, 145, ...
1, 11, 81, 211, 401, 651, 961, ...
1, 41, 141, 181, 41, -399, -1259, ...
1, 29, -363, -2015, -5767, -12459, -22931, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A098336
Expansion of 1/sqrt(1 - 4*x + 12*x^2).
Original entry on oeis.org
1, 2, 0, -16, -56, -48, 384, 1920, 3168, -8512, -66560, -161280, 113920, 2224640, 7311360, 3354624, -69253632, -306754560, -408059904, 1898029056, 12054196224, 25377005568, -38874316800, -443400781824, -1289598418944
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
A098336 := n -> 2^n*hypergeom([-n/2, 1/2-n/2], [1], -2);
seq(round(evalf(A098336(n),99)),n=0..30); # Peter Luschny, Sep 18 2014
-
CoefficientList[Series[1/Sqrt[1-4*x+12*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 09 2013 *)
-
Vec(1/sqrt(1-4*x+12*x^2) + O(x^50)) \\ G. C. Greubel, Jan 30 2017
A098341
Expansion of 1/sqrt(1 - 6*x + 25*x^2).
Original entry on oeis.org
1, 3, 1, -45, -255, -477, 2689, 25203, 82945, -90045, -2379519, -11581677, -12063999, 197669475, 1423716225, 3645266355, -12180238335, -156702949245, -626511576575, 51239061075, 15179398450945, 87687927568035, 151934475887745
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
Table[(-5)^n*LegendreP[n,-3/5],{n,0,20}] (* Vaclav Kotesovec, Jul 23 2013 *)
CoefficientList[Series[1/Sqrt[1-6x+25x^2],{x,0,30}],x] (* Harvey P. Dale, Aug 22 2014 *)
-
a(n)={local(v=Vec((1+2*I*x)^n)); (-1)^n*sum(k=1,#v,v[k]^2);} /* Joerg Arndt, Jul 06 2011 */
-
a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])^2-imag(v[k])^2);} /* Joerg Arndt, Jul 06 2011 */
-
A098341 = lambda n: (-1)^n*hypergeometric([-n,-n], [1], -4)
[Integer(A098341(n).n(100)) for n in (0..22)] # Peter Luschny, Sep 23 2014
A127945
Hankel transform of central coefficients of (1+k*x-2x^2)^n, k arbitrary integer.
Original entry on oeis.org
1, -4, -32, 512, 16384, -1048576, -134217728, 34359738368, 17592186044416, -18014398509481984, -36893488147419103232, 151115727451828646838272, 1237940039285380274899124224, -20282409603651670423947251286016
Offset: 0
-
[2^n*(-2)^Binomial(n+1,2): n in [0..25]]; // G. C. Greubel, May 01 2018
-
Table[2^n*(-2)^Binomial[n+1,2], {n, 0, 25}] (* G. C. Greubel, May 01 2018 *)
-
for(n=0,25, print1(2^n*(-2)^binomial(n+1,2), ", ")) \\ G. C. Greubel, May 01 2018
Showing 1-10 of 13 results.
Comments