A307819
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 + 2*k*x + k*(k+4)*x^2).
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, 0, 5, 0, 1, -4, 3, 16, -5, 0, 1, -5, 8, 27, -56, -11, 0, 1, -6, 15, 32, -189, 48, 41, 0, 1, -7, 24, 25, -416, 567, 384, -29, 0, 1, -8, 35, 0, -725, 2176, 189, -1920, -125, 0, 1, -9, 48, -49, -1080, 5625, -4864, -11259, 3168, 365, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, -1, 0, 3, 8, 15, 24, ...
0, 5, 16, 27, 32, 25, 0, ...
0, -11, 48, 567, 2176, 5625, 11664, ...
0, 41, 384, 189, -4864, -24375, -74304, ...
0, -29, -1920, -11259, -23552, 9375, 228096, ...
-
A[n_, k_] := (-k)^n*Hypergeometric2F1[(1-n)/2, -n/2, 1, -4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)
A307855
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 13, 19, 1, 1, 1, 9, 19, 49, 51, 1, 1, 1, 11, 25, 91, 161, 141, 1, 1, 1, 13, 31, 145, 331, 581, 393, 1, 1, 1, 15, 37, 211, 561, 1441, 2045, 1107, 1, 1, 1, 17, 43, 289, 851, 2841, 5797, 7393, 3139, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, ...
1, 7, 13, 19, 25, 31, 37, ...
1, 19, 49, 91, 145, 211, 289, ...
1, 51, 161, 331, 561, 851, 1201, ...
1, 141, 581, 1441, 2841, 4901, 7741, ...
1, 393, 2045, 5797, 12489, 22961, 38053, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A307862
Coefficient of x^n in (1 + x - n*x^2)^n.
Original entry on oeis.org
1, 1, -3, -17, 49, 651, -1259, -38023, 26433, 2969299, 2225101, -289389891, -692529551, 33718183045, 143578976997, -4559187616649, -29119975483135, 699788001188403, 6188699469443869, -119828491083854707, -1404529670244379599, 22563726025297759345, 341997845736800473397
Offset: 0
-
A307862:= n -> simplify(hypergeom([-n/2, (1-n)/2], [1], -4*n));
seq(A307862(n), n = 0..30); # G. C. Greubel, May 31 2020
-
a[n_]:= SeriesCoefficient[(1 +x -n*x^2)^n, {x,0,n}]; Table[a[n], {n,0,30}] (* G. C. Greubel, May 31 2020 *)
-
{a(n) = polcoef((1+x-n*x^2)^n, n)}
-
{a(n) = sum(k=0, n\2, (-n)^k*binomial(n, k)*binomial(n-k, k))}
-
{a(n) = sum(k=0, n\2, (-n)^k*binomial(n, 2*k)*binomial(2*k, k))}
-
[ hypergeometric([-n/2, (1-n)/2], [1], -4*n).simplify_hypergeometric() for n in (0..30)] # G. C. Greubel, May 31 2020
A308035
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - x + sqrt(1 - 2*x + (1+4*k)*x^2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -3, 1, 1, 1, -3, -8, -3, 1, 1, 1, 1, -4, -11, 1, 21, 11, 1, 1, 1, -5, -14, 9, 61, 51, 15, 1, 1, 1, -6, -17, 21, 121, 91, -41, -13, 1, 1, 1, -7, -20, 37, 201, 101, -377, -391, -77, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -2, -5, -8, -11, -14, -17, ...
1, -3, -3, 1, 9, 21, 37, ...
1, 1, 21, 61, 121, 201, 301, ...
1, 11, 51, 91, 101, 51, -89, ...
1, 15, -41, -377, -1203, -2729, -5165, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
Showing 1-4 of 4 results.
Comments