A307860
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1+4*k)*x^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -3, -5, 1, 1, 1, -5, -11, -5, 1, 1, 1, -7, -17, 1, 11, 1, 1, 1, -9, -23, 19, 81, 41, 1, 1, 1, -11, -29, 49, 211, 141, 29, 1, 1, 1, -13, -35, 91, 401, 181, -363, -125, 1, 1, 1, -15, -41, 145, 651, 41, -2015, -1791, -365, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, -1, -3, -5, -7, -9, -11, ...
1, -5, -11, -17, -23, -29, -35, ...
1, -5, 1, 19, 49, 91, 145, ...
1, 11, 81, 211, 401, 651, 961, ...
1, 41, 141, 181, 41, -399, -1259, ...
1, 29, -363, -2015, -5767, -12459, -22931, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A116093
Expansion of 1/sqrt(1+4*x+12*x^2).
Original entry on oeis.org
1, -2, 0, 16, -56, 48, 384, -1920, 3168, 8512, -66560, 161280, 113920, -2224640, 7311360, -3354624, -69253632, 306754560, -408059904, -1898029056, 12054196224, -25377005568, -38874316800, 443400781824, -1289598418944, -52751204352, 15086928789504, -58620595404800
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(1+4*x+12*x^2) )); // G. C. Greubel, May 10 2019
-
CoefficientList[Series[1/Sqrt[1+4x+12x^2],{x,0,30}],x] (* Harvey P. Dale, Oct 15 2014 *)
-
my(x='x+O('x^30)); Vec(1/sqrt(1+4*x+12*x^2)) \\ G. C. Greubel, May 10 2019
-
(1/sqrt(1+4*x+12*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 10 2019
A307910
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 7, 32, 81, 160, 275, 432, ...
0, 19, 136, 459, 1120, 2275, 4104, ...
0, 51, 592, 2673, 8064, 19375, 40176, ...
0, 141, 2624, 15849, 59136, 168125, 400896, ...
0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
-
A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)
A307911
Coefficient of x^n in expansion of (1 - n*x - n*x^2)^n.
Original entry on oeis.org
1, -1, 0, 27, -416, 5625, -74304, 924385, -8626176, -48361131, 7124800000, -340421390199, 13686496542720, -522760216822129, 19658830846298112, -735037915447265625, 27218267709730979840, -980444996625142158435, 32830565919734078521344, -889052809376495994642527
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-n)^(n-k) * Binomial[n, 2*k] * Binomial[2*k, k], {k, 0, Floor[n/2]}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
Join[{1}, Table[(-n)^n*Hypergeometric2F1[1/2 - n/2, -n/2, 1, -4/n], {n, 1, 20}]] (* Vaclav Kotesovec, May 12 2021 *)
-
{a(n) = polcoef((1-n*x-n*x^2)^n, n)}
-
{a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, k)*binomial(n-k, k))}
-
{a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, 2*k)*binomial(2*k, k))}
A307968
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 + k*x + sqrt(1 + 2*k*x + k*(k+4)*x^2)).
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 2, 0, 1, -4, 6, 4, -3, 0, 1, -5, 12, 0, -24, -1, 0, 1, -6, 20, -16, -63, 48, 11, 0, 1, -7, 30, -50, -96, 297, 24, -15, 0, 1, -8, 42, -108, -75, 896, -621, -464, -13, 0, 1, -9, 56, -196, 72, 1875, -3904, -1053, 1376, 77, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, 0, 2, 6, 12, 20, 30, ...
0, 2, 4, 0, -16, -50, -108, ...
0, -3, -24, -63, -96, -75, 72, ...
0, -1, 48, 297, 896, 1875, 3024, ...
0, 11, 24, -621, -3904, -13125, -32184, ...
0, -15, -464, -1053, 6912, 53125, 200880, ...
-
T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
Showing 1-5 of 5 results.
Comments