cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A307819 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 + 2*k*x + k*(k+4)*x^2).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, 0, 5, 0, 1, -4, 3, 16, -5, 0, 1, -5, 8, 27, -56, -11, 0, 1, -6, 15, 32, -189, 48, 41, 0, 1, -7, 24, 25, -416, 567, 384, -29, 0, 1, -8, 35, 0, -725, 2176, 189, -1920, -125, 0, 1, -9, 48, -49, -1080, 5625, -4864, -11259, 3168, 365, 0
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Examples

			Square array begins:
   1,   1,     1,      1,      1,      1,      1, ...
   0,  -1,    -2,     -3,     -4,     -5,     -6, ...
   0,  -1,     0,      3,      8,     15,     24, ...
   0,   5,    16,     27,     32,     25,      0, ...
   0, -11,    48,    567,   2176,   5625,  11664, ...
   0,  41,   384,    189,  -4864, -24375, -74304, ...
   0, -29, -1920, -11259, -23552,   9375, 228096, ...
		

Crossrefs

Columns k=0..3 give A000007, (-1)^n * A098331, A116093, (-1)^n * A098340.
Main diagonal gives A307911.

Programs

  • Mathematica
    A[n_, k_] := (-k)^n*Hypergeometric2F1[(1-n)/2, -n/2, 1, -4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 - k*x - k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} (-k)^(n-j) * binomial(n,2*j) * binomial(2*j,j).
n * A(n,k) = -k * (2*n-1) * A(n-1,k) - k * (k+4) * (n-1) * A(n-2,k).

A307969 Coefficient of x^n in 1/(n+1) * (1 - 2*x - 2*x^2)^(n+1).

Original entry on oeis.org

1, -2, 2, 4, -24, 48, 24, -464, 1376, -704, -9920, 41600, -55040, -201216, 1266048, -2628864, -3021312, 37696512, -108659712, 15857664, 1067003904, -4155138048, 4378226688, 27416125440, -149814263808, 273526325248, 569660309504, -5103546466304, 13241145229312, 4914079858688
Offset: 0

Views

Author

Seiichi Manyama, May 08 2019

Keywords

Comments

Also coefficient of x^n in the expansion of 2/(1 + 2*x + sqrt(1 + 4*x + 12*x^2)).

Crossrefs

Column 2 of A307968.

Programs

  • Mathematica
    a[n_] := Sum[(-2)^(n-k) * Binomial[n, 2*k] * CatalanNumber[k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
    Table[(-2)^n * Hypergeometric2F1[1/2 - n/2, -n/2, 2, -2], {n, 0, 30}] (* Vaclav Kotesovec, May 12 2021 *)
  • PARI
    {a(n) = polcoef((1-2*x-2*x^2)^(n+1)/(n+1), n)}
    
  • PARI
    {a(n) = sum(k=0, n\2, (-2)^(n-k)*binomial(n, k)*binomial(n-k, k)/(k+1))}
    
  • PARI
    {a(n) = sum(k=0, n\2, (-2)^(n-k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1))}

Formula

a(n) = Sum_{k=0..floor(n/2)} (-2)^(n-k) * binomial(n,k) * binomial(n-k,k)/(k+1) = Sum_{k=0..floor(n/2)} (-2)^(n-k) * binomial(n,2*k) * A000108(k).
(n+2) * a(n) = -2 * (2*n+1) * a(n-1) - 12 * (n-1) * a(n-2).
a(n) = (-2)^n * Hypergeometric2F1(1/2 - n/2, -n/2, 2, -2). - Vaclav Kotesovec, May 12 2021

A116021 phi(n) plus the n-th prime gives a square.

Original entry on oeis.org

2, 4, 14, 27, 30, 65, 80, 113, 174, 332, 483, 498, 547, 684, 734, 737, 761, 944, 1693, 1855, 2204, 3358, 3461, 3647, 3787, 3908, 4180, 6144, 6915, 7638, 7763, 10249, 10676, 12235, 13359, 14038, 16002, 19736, 21148, 23392, 23899, 24295, 24663
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Examples

			phi(332)+p(332)=2401=49^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[25000],IntegerQ[Sqrt[EulerPhi[#]+Prime[#]]]&] (* Harvey P. Dale, Oct 05 2019 *)
Showing 1-3 of 3 results.