A066802
a(n) = binomial(6*n,3*n).
Original entry on oeis.org
1, 20, 924, 48620, 2704156, 155117520, 9075135300, 538257874440, 32247603683100, 1946939425648112, 118264581564861424, 7219428434016265740, 442512540276836779204, 27217014869199032015600, 1678910486211891090247320, 103827421287553411369671120, 6435067013866298908421603100
Offset: 0
-
[Binomial(6*n, 3*n): n in [0..15]]; // G. C. Greubel, Feb 17 2020
-
a := n -> hypergeom([-3*n, -3*n], [1], 1):
seq(simplify(a(n)), n=0..13); # Peter Luschny, Mar 19 2018
-
Table[Binomial[6n, 3n], {n,0,13}] (* Jean-François Alcover, Jun 03 2019 *)
-
a(n) = { binomial(6*n, 3*n) } \\ Harry J. Smith, Mar 28 2010
-
[binomial(6*n, 3*n) for n in (0..15)] # G. C. Greubel, Feb 17 2020
A098332
Expansion of 1/sqrt(1 - 2*x + 9*x^2).
Original entry on oeis.org
1, 1, -3, -11, 1, 81, 141, -363, -1791, -479, 13597, 29877, -54911, -353807, -223443, 2539989, 6806529, -8302527, -73999299, -73313931, 489731841, 1584548241, -1110170163, -15812965611, -21391839999, 94696016481
Offset: 0
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, ex. 7.56, p. 575.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
a := n -> hypergeom([1/2-n/2, -n/2], [1], -8);
seq(round(evalf(a(n),99)),n=0..30); # Peter Luschny, Sep 18 2014
-
Table[(-3)^n*LegendreP[n,-1/3],{n,0,20}] (* Vaclav Kotesovec, Jul 23 2013 *)
CoefficientList[Series[1/Sqrt[1 - 2*x + 9*x^2], {x,0,50}], x] (* G. C. Greubel, Feb 18 2017 *)
-
x='x+O('x^25); Vec(1/sqrt(1 - 2*x + 9*x^2)) \\ G. C. Greubel, Feb 18 2017
A187364
Trisection of A000984 (central binomial coefficients): binomial(2(3n+1),3n+1)/2, n>=0.
Original entry on oeis.org
1, 35, 1716, 92378, 5200300, 300540195, 17672631900, 1052049481860, 63205303218876, 3824345300380220, 232714176627630544, 14226520737620288370, 873065282167813104916, 53753604366668088230810, 3318776542511877736535400, 205397724721029574666088520
Offset: 0
-
Table[c=3n+1;Binomial[2c,c]/2,{n,0,20}] (* Harvey P. Dale, May 10 2012 *)
A307884
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 + 2*(k-1)*x + ((k+1)*x)^2).
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -2, 1, 1, -2, -3, 0, 1, 1, -3, -2, 11, 6, 1, 1, -4, 1, 28, 1, 0, 1, 1, -5, 6, 45, -74, -81, -20, 1, 1, -6, 13, 56, -255, -92, 141, 0, 1, 1, -7, 22, 55, -554, 477, 1324, 363, 70, 1, 1, -8, 33, 36, -959, 2376, 2689, -3656, -1791, 0, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -2, -3, -2, 1, 6, 13, ...
1, 0, 11, 28, 45, 56, 55, ...
1, 6, 1, -74, -255, -554, -959, ...
1, 0, -81, -92, 477, 2376, 6475, ...
1, -20, 141, 1324, 2689, -804, -20195, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A187365
Trisection of A000984 (central binomial coefficients): binomial(2(3n+2),3n+2)/3!, n>=0.
Original entry on oeis.org
1, 42, 2145, 117572, 6686100, 388934370, 22974421470, 1372238454600, 82653088824684, 5011211083256840, 305437356823765089, 18697712969443807572, 1148770108115543559100, 70797430141465286938140, 4374750896947475198160300, 270950190057528375091435920
Offset: 0
A012000
Expansion of 1/sqrt(1 - 4*x + 16*x^2).
Original entry on oeis.org
1, 2, -2, -28, -74, 92, 1324, 3656, -4826, -70228, -197372, 267896, 3921724, 11126936, -15347432, -225505648, -643622906, 897078476, 13214495764, 37869162392, -53170602284, -784672445368, -2255295815192, 3183829452272, 47051201187676, 135537088268792, -192142210448216
Offset: 0
G.f. = 1 + 2*x - 2*x^2 - 28*x^3 - 74*x^4 + 92*x^5 + 1324*x^6 + 3656*x^7 + ...
- T. D. Noe, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
a := n -> 4^n*hypergeom([-n,1+n],[1],1/4);
seq(simplify(a(n)),n=0..26); # Peter Luschny, May 09 2016
-
Table[ 2^(2n) LegendreP[ n, 1/2 ], {n, 12} ]
-
{a(n) = 2^(2*n) * subst( pollegendre(n), x, 1/2)} /* Michael Somos, Dec 03 2001 */
-
a(n) = polcoeff(((1 - x)*(1 + 3*x))^n, n); \\ Michel Marcus, Aug 16 2015
A098341
Expansion of 1/sqrt(1 - 6*x + 25*x^2).
Original entry on oeis.org
1, 3, 1, -45, -255, -477, 2689, 25203, 82945, -90045, -2379519, -11581677, -12063999, 197669475, 1423716225, 3645266355, -12180238335, -156702949245, -626511576575, 51239061075, 15179398450945, 87687927568035, 151934475887745
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
Table[(-5)^n*LegendreP[n,-3/5],{n,0,20}] (* Vaclav Kotesovec, Jul 23 2013 *)
CoefficientList[Series[1/Sqrt[1-6x+25x^2],{x,0,30}],x] (* Harvey P. Dale, Aug 22 2014 *)
-
a(n)={local(v=Vec((1+2*I*x)^n)); (-1)^n*sum(k=1,#v,v[k]^2);} /* Joerg Arndt, Jul 06 2011 */
-
a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])^2-imag(v[k])^2);} /* Joerg Arndt, Jul 06 2011 */
-
A098341 = lambda n: (-1)^n*hypergeometric([-n,-n], [1], -4)
[Integer(A098341(n).n(100)) for n in (0..22)] # Peter Luschny, Sep 23 2014
A335310
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * (-n)^(n-k).
Original entry on oeis.org
1, 1, -2, 11, -74, 477, -804, -84425, 3315334, -102211207, 3005297956, -88338323709, 2627003399164, -78764141488043, 2341929797646648, -66394419743289105, 1609460569459689286, -18001777147777896975, -1625299659961386724524, 196005371138608184827003
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] (-n)^(n - k), {k, 0, n}], {n, 1, 19}]]
Table[SeriesCoefficient[1/Sqrt[1 + 2 (n - 2) x + n^2 x^2], {x, 0, n}], {n, 0, 19}]
Table[n! SeriesCoefficient[Exp[(2 - n) x] BesselI[0, 2 Sqrt[1 - n] x], {x, 0, n}], {n, 0, 19}]
Table[Hypergeometric2F1[-n, -n, 1, 1 - n], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n,k)^2*(1-n)^k); \\ Michel Marcus, Jun 01 2020
A336729
G.f. A(x) satisfies: A(x) = 1 + x * A(x) / (1 + 3 * x * A(x)).
Original entry on oeis.org
1, 1, -2, 1, 10, -38, 28, 289, -1262, 1054, 11044, -51302, 45604, 482068, -2319176, 2140129, 22753378, -111964106, 105927508, 1130780062, -5652760340, 5444054956, 58291068808, -294808277414, 287740874260, 3088109246572, -15758505143192, 15541351662484, 167103084713608
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-3)^(n - k) * Binomial[n, k] * Binomial[n , k - 1], {k, 1, n}] / n; Array[a, 29, 0] (* Amiram Eldar, Aug 02 2020 *)
-
{a(n) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A/(1+3*x*A)); polcoef(A, n)}
-
{a(n) = if(n==0, 1, sum(k=1, n, (-3)^(n-k)*binomial(n, k)*binomial(n, k-1))/n)}
-
N=40; x='x+O('x^N); Vec(2/(1-4*x+sqrt(1+4*x+16*x^2)))
-
{a(n) = sum(k=0, n, (-3)^k*4^(n-k)*binomial(n, k)*binomial(n+k, n)/(k+1))}
A116092
Expansion of 1/sqrt(1+8*x+64*x^2).
Original entry on oeis.org
1, -4, -8, 224, -1184, -2944, 84736, -467968, -1235456, 35956736, -202108928, -548651008, 16063381504, -91151859712, -251452325888, 7389369073664, -42180470767616, -117581870006272, 3464100777558016, -19854347412176896, -55753417460547584, 1645577388148391936
Offset: 0
-
List([0..30], n-> 2^n*Sum([0..n], k-> (-3)^k*Binomial(n,k)* Binomial(n, n-k))); # G. C. Greubel, May 10 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(1+8*x+64*x^2) )); // G. C. Greubel, May 10 2019
-
CoefficientList[Series[1/Sqrt[1+8*x+64*x^2], {x, 0, 30}], x] (* G. C. Greubel, May 10 2019 *)
-
my(x='x+O('x^30)); Vec(1/sqrt(1+8*x+64*x^2)) \\ G. C. Greubel, May 10 2019
-
(1/sqrt(1+8*x+64*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 10 2019
Showing 1-10 of 11 results.
Comments