A381422 Expansion of g.f. = exp( Sum_{n>=1} A066802(n)*x^n/n ).
1, 20, 662, 26780, 1205961, 58050204, 2924165436, 152231599628, 8125577046740, 442293253888592, 24457749066666142, 1370114821790970340, 77591333270514869230, 4434803157977731784808, 255492958449660158603448, 14820943641891118200315756, 864962304943085638764540396
Offset: 0
Keywords
Formula
G.f. = 64/((1 + sqrt(1 - 4*x^(1/3)))^2*(1 + sqrt(1 + 4*(-1)^(1/3)*x^(1/3)))^2*(1 + sqrt(1 - 4*(-1)^(2/3)*x^(1/3)))^2).
The above g.f. denoted by h satisfies algebraic equation of order eight:
1 + (8*x - 1)*h + 4*x*(7*x + 3)*h^2 + 7*x^2*(8*x - 1)*h^3 + x^2*(70*x^2 - 40*x + 1)*h^4 + 7*x^4*(8*x - 1)*h^5 + 4*x^5*(7*x + 3)*h^6 + x^6*(8*x - 1)*h^7 + x^8*h^8 = 0.
Comments