cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A060941 Duchon's numbers: the number of paths of length 5*n from the origin to the line y = 2*x/3 with unit East and North steps that stay below the line or touch it.

Original entry on oeis.org

1, 2, 23, 377, 7229, 151491, 3361598, 77635093, 1846620581, 44930294909, 1113015378438, 27976770344941, 711771461238122, 18293652115906958, 474274581883631615, 12388371266483017545, 325714829431573496525, 8613086428709348334675, 228925936056388155632081
Offset: 0

Views

Author

Philippe Flajolet, May 12 2001

Keywords

Comments

A generalization of the ballot numbers.

Crossrefs

See A293946 for a closely related sequence, also from the Bizley paper.

Programs

  • Magma
    [&+[1/(5*n+i+1)*Binomial(5*n+1, n-i)*Binomial(5*n+2*i, i): i in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Feb 12 2016
  • Maple
    A060941 := n -> hypergeom([-n,5*n/2+1/2,5*n/2+1],[4*n+2,5*n+2],-4)* binomial(5*n,n)/(4*n+1); seq(simplify(A060941(n)),n=0..18); # Peter Luschny, Oct 05 2014
  • Mathematica
    a[n_] := ((5n)!*(5n + 1)!*HypergeometricPFQRegularized[{-n, 5n/2 + 1/2, 5n/2 + 1}, {4n + 2, 5n + 2}, -4])/n!; a /@ Range[0, 16]
    (* Jean-François Alcover, Jun 30 2011, after given formula *)
  • Sage
    A060941 = lambda n : hypergeometric([-n,5*n/2+1/2,5*n/2+1],[4*n+2,5*n+2],-4)*gamma(1+5*n)/(gamma(1+n)*gamma(2+4*n))
    [A060941(n).simplify() for n in range(19)] # Peter Luschny, Oct 05 2014
    

Formula

a(n) = Sum_{i=0..n} 1/(5*n+i+1) * C(5*n+1, n-i) * C(5*n+2*i, i).
a(n) = Sum_{i=0..2*n} (-1)^i/(5*i+1) * C((5*i+1)/2, i) * 1/(1+5*(2*n-i)) * C((1+5*(2*n-i))/2, 2*n-i).
G.f. A(z) satisfies: A(z) = 1+2*z*A^5-z*A^6+z*A^7+z^2*A^10. [Corrected by Bryan T. Ek, Oct 30 2017]
G.f.: A(z) = exp(C(5,2)*z/5 + C(10,4)*z^2/10 + C(15,6)*z^3/15 + ...). - Don Knuth, Oct 05 2014
Recurrence: 216*(n-1)*n*(2*n-1)*(3*n-4)*(3*n-2)*(3*n-1)*(3*n+1)*(6*n-1)*(6*n+1)*(5625*n^4 - 38550*n^3 + 97425*n^2 - 107784*n + 44044)*a(n) = 540*(n-1)*(3*n-4)*(3*n-2)*(126562500*n^10 - 1373625000*n^9 + 6557484375*n^8 - 18192221250*n^7 + 32549973750*n^6 - 39248008800*n^5 + 32203028675*n^4 - 17641491134*n^3 + 6113558828*n^2 - 1191132600*n + 96112128)*a(n-1) - 450*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(63281250*n^9 - 718453125*n^8 + 3556125000*n^7 - 10046426250*n^6 + 17765816250*n^5 - 20240090325*n^4 + 14698993900*n^3 - 6468702396*n^2 + 1533535184*n - 142988160)*a(n-2) + 78125*(n-2)*(5*n-14)*(5*n-13)*(5*n-12)*(5*n-11)*(5*n-9)*(5*n-8)*(5*n-7)*(5*n-6)*(5625*n^4 - 16050*n^3 + 15525*n^2 - 6084*n + 760)*a(n-3). - Vaclav Kotesovec, Oct 05 2014
Asymptotics (Duchon, 2000): a(n) ~ c * (3125/108)^n / n^(3/2), where c = 0.0876612192439026461763141944768209255550234422281635788... (constant corrected, in the reference "On the enumeration and generation of generalized Dyck words", p.132 is a wrong value 0.0887). - Vaclav Kotesovec, Oct 05 2014, c = sqrt(5*(10^(2/3) - 5^(1/3)/2^(2/3) - 2))/(18*sqrt(Pi)). - Vaclav Kotesovec, Sep 16 2021
a(n) = Gamma(n+4/5)*Gamma(n+3/5)*Gamma(n+2/5)*3125^n*hypergeom([-n, (5/2)*n+1, (5/2)*n+1/2], [5*n+2, 4*n+2], -4)*Gamma(n+1/5)/ (Pi^2*csc((2/5)*Pi)*csc((1/5)*Pi)*Gamma(4*n+2)). - Robert Israel, Oct 05 2014
a(n) = A002294(n)*hypergeom([-n,5*n/2+1/2,5*n/2+1],[4*n+2,5*n+2],-4). - Peter Luschny, Oct 05 2014
O.g.f. A(x) satisfies: A(x)^5 = 1/x*series reversion( x/((1+x)*C(x))^5 ), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See A001450. - Peter Bala, Oct 05 2015
The sequence defined by b(n) := [x^n] A(x)^n begins [1, 2, 50, 1415, 42258, 1300727, 40820837, 1298493730, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 7 (checked up to p = 101). [Added 23 Oct 2024: More generally, let r be an integer and s a positive integer and define a sequence u(n) by u(n) = [x^(s*n)] A(x)^(r*n). Then we conjecture that the supercongruences u(n*p^k) == u(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 7 and positive integers n and k.] - Peter Bala, Sep 12 2021
Inductively define a family of sequences {a(i,n) : n >= 0}, i >= 1, by setting a(1,n) = a(n) and, for i >= 2, a(i,n) = [x^n] ( exp(Sum_{k >= 1} a(i-1,k)*x^k/k) )^n. We conjecture that the sequences {a(i,n) : n >= 0}, i >= 2, also satisfy the supercongruences u(n*p^k) == u(n*p^(k-1)) (mod p^(3*k)) for primes p >= 7 and positive integers n and k. - Peter Bala, Oct 24 2024

A023847 Sum of exponents in prime-power factorization of binomial(5n, 2n).

Original entry on oeis.org

0, 2, 4, 4, 6, 8, 8, 11, 11, 11, 13, 13, 13, 18, 16, 17, 17, 19, 18, 18, 22, 24, 21, 23, 23, 24, 28, 26, 26, 30, 29, 32, 28, 30, 31, 31, 32, 35, 35, 36, 36, 36, 37, 33, 35, 38, 36, 39, 36, 40, 40, 41, 45, 48, 43, 46, 46, 45, 50, 47, 49, 52, 52, 49, 46, 51, 51, 50, 50, 55, 51, 57, 54, 57, 57, 55, 59, 62
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[Binomial[5 n, 2 n]], {n, 77}] (* Ivan Neretin, Nov 09 2017 *)
  • PARI
    a(n) = bigomega(binomial(5*n, 2*n)); \\ Michel Marcus, Nov 09 2017
    
  • PARI
    a(n) = my(res = 0); forprime(p = 2, 5*n, res += (val(5*n, p) - val(2*n, p) - val(3*n, p))); res
    val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Nov 09 2017

Formula

a(n) = A001222(A001450(n)). - Michel Marcus, Nov 09 2017

Extensions

a(0) = 0 prepended by David A. Corneth, Nov 09 2017

A066802 a(n) = binomial(6*n,3*n).

Original entry on oeis.org

1, 20, 924, 48620, 2704156, 155117520, 9075135300, 538257874440, 32247603683100, 1946939425648112, 118264581564861424, 7219428434016265740, 442512540276836779204, 27217014869199032015600, 1678910486211891090247320, 103827421287553411369671120, 6435067013866298908421603100
Offset: 0

Views

Author

Benoit Cloitre, Jan 18 2002

Keywords

Comments

For the trisection of a sequence (here A000984) given by its real o.g.f. see a comment and a reference under A187357.

Crossrefs

Cf. A001450, A066798, A187364 (binomial(2(3n+1),3n+1)/2), A187365 (binomial(2(3n+2),3n+2)/3!).

Programs

  • Magma
    [Binomial(6*n, 3*n): n in [0..15]]; // G. C. Greubel, Feb 17 2020
    
  • Maple
    a := n -> hypergeom([-3*n, -3*n], [1], 1):
    seq(simplify(a(n)), n=0..13); # Peter Luschny, Mar 19 2018
  • Mathematica
    Table[Binomial[6n, 3n], {n,0,13}] (* Jean-François Alcover, Jun 03 2019 *)
  • PARI
    a(n) = { binomial(6*n, 3*n) } \\ Harry J. Smith, Mar 28 2010
    
  • Sage
    [binomial(6*n, 3*n) for n in (0..15)] # G. C. Greubel, Feb 17 2020

Formula

a(n) = A000984(3*n).
a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} binomial(n, i)*binomial(n, j) *binomial(n, k)*binomial(3n, i+j+k). - Benoit Cloitre, Mar 08 2005
O.g.f. (with a(0):=1): (cb(x^(1/3)) + sqrt(2)*P(x^(1/3))*sqrt(1/P(x^(1/3))+1+2*x^(1/3)))/3, with cb(x):=1/sqrt(1-4*x) (o.g.f. of A000984) and P(x):=P(-1/2,4*x) = 1/sqrt(1+4*x+16*x^2) (o.g.f. of A116091, with P(x,z) the o.g.f. of the Legendre polynomials). - Wolfdieter Lang, Mar 24 2011
D-finite with recurrence n*(3n-1)*(3n-2)*a(n) = 8*(6n-5)*(6n-1)*(2n-1)*a(n-1). - R. J. Mathar, Sep 17 2012
a(n) = GegenbauerC(3*n, -3*n, -1). - Peter Luschny, May 07 2016
a(n) = hypergeom([-3*n, -3*n], [1], 1). - Peter Luschny, Mar 19 2018
a(n) ~ 2^(6*n)/sqrt(3*Pi*n). - Vaclav Kotesovec, Jun 07 2019
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k.
a(n) = [(x*y)^(3*n)] (1 + x + y)^(6*n). Cf. A001448. (End)
Conjecture: a(n) = [x^n] G(x)^(2*n), where G(x) = (1 + x)*(1 - 6*x + x^2)/(2*x) + (x^2 - 1)*sqrt(1 - 14*x + x^2)/(2*x) = 1 + 10*x + 81*x^2 + 720*x^3 + .... The algebraic function G(x) satisfies the quadratic equation x*G(x)^2 - (1 - 5*x - 5*x^2 + x^3)*G(x) + (1 + x)^4 = 0. Cf. A001450. - Peter Bala, Oct 27 2022
a(n) = Sum_{k = 0..3*n} binomial(3*n+k-1, k). - Peter Bala, Jun 04 2024
O.g.f: 3F2(1/6,1/2,5/6; 1/3,2/3 ; 64*x). - R. J. Mathar, Jan 11 2025

Extensions

Extended to a(0)=1 by M. F. Hasler, Oct 06 2014

A167422 Expansion of (1+x)*c(x), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 2, 3, 7, 19, 56, 174, 561, 1859, 6292, 21658, 75582, 266798, 950912, 3417340, 12369285, 45052515, 165002460, 607283490, 2244901890, 8331383610, 31030387440, 115948830660, 434542177290, 1632963760974, 6151850548776
Offset: 0

Views

Author

Paul Barry, Nov 03 2009

Keywords

Comments

Hankel transform is A167423.
Apparently a(n) = A071716(n) if n>1. - R. J. Mathar, Nov 12 2009

Crossrefs

Programs

  • Maple
    A167422List := proc(m) local A, P, n; A := [1, 2]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), A[-1]]);
    A := [op(A), P[-1]] od; A end: A167422List(26); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[If[n < 2, n + 1, Binomial[2 n, n]/(n + 1) + Binomial[2 (n - 1), n - 1]/n], {n, 0, 25}] (* Michael De Vlieger, Oct 05 2015 *)
    CoefficientList[Series[(1 + t)*(1 - Sqrt[1 - 4*t])/(2*t), {t, 0, 50}], t] (* G. C. Greubel, Jun 12 2016 *)
  • PARI
    a(n) = if (n<2, n+1, binomial(2*n, n)/(n+1) + binomial(2*(n-1), n-1)/n);
    vector(50, n, a(n-1)) \\ Altug Alkan, Oct 04 2015

Formula

a(n) = Sum_{k=0..n} A000108(k)*C(1,n-k).
a(0)= 1, a(n) = A005807(n-1) for n>0. - Philippe Deléham, Nov 25 2009
(n+1)*a(n) +(-3*n+1)*a(n-1) +2*(-2*n+5)*a(n-2)=0, for n>2. - R. J. Mathar, Feb 10 2015
-(n+1)*(5*n-6)*a(n) +2*(5*n-1)*(2*n-3)*a(n-1)=0. - R. J. Mathar, Feb 10 2015
The o.g.f. A(x) satisfies [x^n] A(x)^(5*n) = binomial(5*n,2*n) = A001450(n). Cf. A182959. - Peter Bala, Oct 04 2015

A182959 Expansion of o.g.f. 2*(1+x)^2/(1-2*x+sqrt(1-8*x)).

Original entry on oeis.org

1, 5, 20, 96, 528, 3136, 19584, 126720, 841984, 5710848, 39376896, 275185664, 1944821760, 13875707904, 99807723520, 722997411840, 5269761884160, 38620004352000, 284405842575360, 2103530005463040, 15619068033761280
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2010

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 20*x^2 + 96*x^3 + 528*x^4 + 3136*x^5 +...
where A(x*F(x)^3) = F(x) is the g.f. of A182960:
F(x) = 1 + 5*x + 95*x^2 + 2496*x^3 + 76063*x^4 + 2524161*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[2 (1 + x)^2/(1 - 2 x + Sqrt[1 - 8 x]), {x, 0, 20}], x]  (* Robert G. Wilson v, Dec 31 2010 *)
  • PARI
    {a(n)=polcoeff(2*(1+x)^2/(1-2*x+sqrt(1-8*x+x*O(x^n))),n)}

Formula

Let F(x) be the g.f. of A182960, then g.f. of this sequence satisfies:
* A(x) = F(x/A(x)^3) and A(x*F(x)^3) = F(x);
* A(x) = [x/Series_Reversion( x*F(x)^3 )]^(1/3).
G.f.: 1/2/x - 1/2 - x - (1+x)/x/G(0), where G(k)= 1 + 1/(1 - 4*x*(2*k+1)/(4*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
a(n) ~ 9*2^(3*n-2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
From Peter Bala, Oct 04 2015: (Start)
O.g.f. A(x) = (1 + x)*(2*C(2*x) - 1), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
[x^n] A(x)^(3*n) = binomial(6*n,2*n). Cf. with the identity [x^n] ( (1 + x)*C(x) )^(5*n) = binomial(5*n,2*n) = A001450(n). (End)
Conjecture: D-finite with recurrence (n+1)*a(n) +(-7*n+3)*a(n-1) +4*(-2*n+5)*a(n-2)=0. - R. J. Mathar, Jan 22 2020
From Peter Bala, May 15 2023: (Start)
a(n) = 3*(2^n)*(3*n - 1)/(n*(n + 1)) * binomial(2*n-2,n-1) for n >= 2.
(n + 1)*(3*n - 4)*a(n) = 4*(2*n - 3)*(3*n - 1)*a(n-1) for n >= 3 with a(2) = 20. Mathar's conjectured second order recurrence above follows from this. (End)
[x^n] A(x)^n = A372215(n). - Peter Bala, Nov 07 2024

A364507 a(n) = (5*n)!*(4*n)! / ((3*n)!^2 * (2*n)! * n!).

Original entry on oeis.org

1, 40, 5880, 1101100, 229265400, 50678855040, 11641642112100, 2746924727976000, 661097260785195000, 161538994454795003200, 39949572934939198410880, 9976687616280042928424700, 2511716999955421326631644900, 636662322699394050738883008000
Offset: 0

Views

Author

Peter Bala, Jul 27 2023

Keywords

Comments

Row 2 of A364506.

Examples

			Examples of supercongruences:
a(7) - a(1) = 2746924727976000 - 40 = (2^3)*5*(7^4)*28601881799 == 0 (mod 7^4).
a(11) - a(1) = 9976687616280042928424700 - 40 = (2^2)*5*(11^3)*18397*3568463* 5708869513 == 0 (mod 11^3).
		

Crossrefs

Programs

  • Maple
    seq( (5*n)!*(4*n)!*(2*n)! / ((3*n)!^2 * (2*n)!^2 * n!), n = 0..15);
  • Mathematica
    A364507[n_]:=(5n)!(4n)!/((3n)!^2(2n)!n!);Array[A364507,15,0] (* Paolo Xausa, Oct 06 2023 *)

Formula

a(n) = Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k) * binomial(4*n, 2*n + k)^2 (showing a(n) to be integral). Compare with Dixon's identity, Sum_{k = -n..n} (-1)^k * binomial(2*n, n + k)^3 = (3*n)!/n!^3 = A006480(n).
P-recursive: a(n) = (20/9)*(4*n-1)*(4*n-3)*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)/((3*n-1)^2*(3*n-2)^2*n^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * sqrt(10)/(6*Pi*n), where c = (2^6)*(5^5)/(3^6).
a(n) = [x^n] G(x)^(20*n), where the power series G(x) = 1 + 2*x + 69*x^2 + 5647*x^3 + 618860*x^4 + 79241349*x^5 + 11177111981*x^6 + 1684171189810*x^7 + 266238907746252*x^8 + ... appears to have integer coefficients.
exp( Sum_{n > = 1} a(n)*x^n/n ) = F(x)^20, where the power series F(x) = 1 + 2*x + 149*x^2 + 18647*x^3 + 2913620*x^4 + 515276389*x^5 + 98628630997*x^6 + 19944410220744*x^7 + 4199273746072180*x^8 + ... appears to have integer coefficients.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r [added Aug 04 2023: the conjecture follows from Meštrović. equation 39].
a(n) = binomial(4*n,n)*binomial(5*n,2*n). - Christian Krause, Aug 03 2023

A259613 a(n) = binomial(6*n,2*n)/3, n>0, a(0)=1.

Original entry on oeis.org

1, 5, 165, 6188, 245157, 10015005, 417225900, 17620076360, 751616304549, 32308782859535, 1397281501935165, 60727722660586800, 2650087220696342700, 116043807643289338428, 5096278545356362962504, 224377658168860057076688
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Binomial(6*n,2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
  • Mathematica
    Join[{1}, Table[Binomial[6 n, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
  • PARI
    vector(20,n, n--; if (n==0, 1, binomial(6*n,2*n)/3)) \\ Michel Marcus, Jul 01 2015
    

Formula

G.f.: A(x) = 1 + (x*B(x)')/(B(x)) where B(x) = 2 * (1 + x*B(x)^2)^2 / (1 - 2*x*B(x)^2 + sqrt(1-8*x*B(x)^2)).
a(n) ~ 3^(6*n-1/2) / (sqrt(Pi*n) * 2^(4*n+3/2)). - Vaclav Kotesovec, Jul 01 2015
a(n) = A025174(2*n), n>0. - R. J. Mathar, Jun 07 2016
From Peter Bala, Jun 08 2024: (Start)
a(n) = (9/2)*(6*n-1)*(6*n-5)*(3*n-1)*(3*n-2)/((4*n-1)*(4*n-3)*(2*n-1)*n) * a(n-1) with a(0) = 1 and a(1) = 5.
Right-hand side of the identity (1/3)*Sum_{k = 0..2*n} (-1)^k*binomial(-n, k)* binomial(5*n-k, 2*n-k) = (1/3)*binomial(6*n, 2*n). Compare with the identity Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(5*n-k, 2*n-k) = binomial(4*n, 2*n). (End)
From Karol A. Penson, Jan 26 2025: (Start)
G.f. for 3*a(n),a(0)=1, denoted A, expressible entirely by radicals: A = A1 + A2 with
A1 = ((4*sqrt(4 - 27*sqrt(z)) + 12*i*sqrt(3)*z^(1/4))^(1/3) + (4*sqrt(4 - 27*sqrt(z)) - 12*i*sqrt(3)*z^(1/4))^(1/3))/(4*sqrt(4 - 27*sqrt(z))), and
A2 = (1/(4*sqrt(4 + 27*sqrt(z)) + 12*sqrt(3)*z^(1/4))^(1/3) + 1/(4*sqrt(4 + 27*sqrt(z)) - 12*sqrt(3)*z^(1/4))^(1/3))/sqrt(4 + 27*sqrt(z)),
where i = sqrt(-1), the imaginary unit. (End)

A259550 a(n) = C(5*n-1,2*n)/3, n > 0, a(0) = 1.

Original entry on oeis.org

1, 2, 42, 1001, 25194, 653752, 17298645, 463991880, 12570420330, 343176898988, 9425842448792, 260170725132045, 7210477496434485, 200519284375732896, 5592628786362932776, 156375886125188595376, 4382048530314336892010, 123033460966787345446836
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Binomial(5*n-1, 2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
  • Mathematica
    Join[{1}, Table[Binomial[5 n - 1, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
  • Maxima
    makelist(if n=0 then 1 else binomial(5*n-1,2*n)/3,n,0,20);
    
  • PARI
    vector(20, n, n--; if (n==0, 1, binomial(5*n-1,2*n)/3)) \\ Michel Marcus, Jul 01 2015
    

Formula

G.f.: A(x) = 1 + (x*B(x)')/(B(x)), B(x) = (1 + x*B(x)^5)*C(x*B(x)^5) is g.f. of A060941, C(x) is g.f. of Catalan numbers.
a(n) = n*Sum_{i = 0..n}((C(5*n,i)*C(7*n-2*i-1,n-i))/(6*n-i)), n > 1, a(0) = 1.
a(n) = 1/5*A001450(n) for n >= 1. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 23*x^2 + 377*x^3 + ... is the o.g.f. for the sequence of Duchon numbers A060941. - Peter Bala, Oct 05 2015
D-finite with recurrence 6*n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A384668 a(n) = 12 * (5*n+2)! / ((3*n+1)! * (2*n+2)!).

Original entry on oeis.org

12, 105, 1584, 29172, 596904, 13037895, 297748800, 7023149820, 169774618104, 4183919862474, 104722807600320, 2654939113240050, 68033328627480804, 1759318006963275528, 45853277234783179392, 1203249937243079847660, 31764232607604306053400, 842982010030680328418706
Offset: 0

Views

Author

Karol A. Penson, Jun 06 2025

Keywords

Crossrefs

Programs

Formula

O.g.f.: 12*hypergeom([3/5, 4/5, 1, 6/5, 7/5], [2/3, 4/3, 3/2, 2], (3125*x)/108).
E.g.f.: 12*hypergeom([3/5, 4/5, 6/5, 7/5], [2/3, 4/3, 3/2, 2], (3125*x)/108).
O.g.f. denoted by h(x), satisfies the algebraic equation of order 10:
1889568 - 6141096*x + 10628820*x^2 - 59049*x^3 + (-2834352*x^3 + 4861701*x^2 - 2834352*x - 157464)*h(x) + 13122*x*(14*x^3 - 77*x^2 + 124*x + 30)*h(x)^2 - 4374*x^2*(14*x^2 + 94*x + 99)*h(x)^3 + 729*x^3*(50*x^2 + 32*x + 377)*h(x)^4 - 243*x^4*(11*x^2 - 40*x + 456)*h(x)^5 - 243*x^5*(8*x - 121)*h(x)^6 + 54*x^6*(2*x - 95)*h(x)^7 + 567*x^7*h(x)^8 - 36*x^8*h(x)^9 + x^9*h(x)^10 = 0.
a(n) = Integral_{x=0..3125/108} x^n*W(x)*dx, where W(x) = W1(x)+W2(x)+W3(x)+W4(x), with
W1(x) = (3*sqrt(5)*csc(Pi/5)*sin(Pi/10)*hypergeom([-2/5, 1/10, 4/15, 14/15], [1/5, 2/5, 4/5], (108*x)/3125))/(2*Pi*x^(2/5)),
W2(x) = (6*sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*hypergeom([-1/5, 3/10, 7/15, 17/15], [2/5, 3/5, 6/5], (108*x)/3125))/(5*Pi*x^(1/5)),
W3(x) = -(24*sqrt(5)*csc((2*Pi)/5)*sin((3*Pi)/10)*x^(1/5)*hypergeom([1/5, 7/10, 13/15, 23/15], [4/5, 7/5, 8/5], (108*x)/3125))/(125*Pi), and
W4(x) = -(33*sqrt(5)*csc(Pi/5)*sin(Pi/10)*x^(2/5)*hypergeom([2/5, 9/10, 16/15, 26/15], [6/5, 8/5, 9/5], (108*x)/3125))/(1250*Pi).
This integral representation is unique as it is the solution of the Hausdorff power moment of the function W(x). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 3125/108. Therefore a(n) is a positive definite sequence.
Showing 1-9 of 9 results.