cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A098418 Number of prime triples (p,q,r) with p

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 3, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 07 2004

Keywords

Comments

0 <= a(n) <= 3;
a(A098419(n))=0; a(A098420(n))>0; a(A098421(n))=1; a(A098422(n))=2; a(A098423(n))=3.

Examples

			A000040(13)=41: A007529(7)=41, A098414(6)=41 and
A098415(k)<>41 for all k, therefore a(13)=2.
		

Crossrefs

A098419 Primes not occurring in prime triples (p,q,r) with p

Original entry on oeis.org

2, 3, 29, 31, 53, 59, 61, 79, 83, 89, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 211, 239, 241, 251, 257, 263, 269, 271, 293, 331, 337, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 479, 487, 491, 499, 503
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 07 2004

Keywords

Comments

A098418(a(n)) = 0; complement of A098420 in A000040.

A098421 Primes occurring in exactly one prime triple (p,q,r) with p

Original entry on oeis.org

5, 23, 37, 47, 67, 71, 73, 97, 113, 191, 199, 223, 233, 277, 281, 283, 307, 317, 347, 349, 353, 457, 467, 613, 617, 619, 641, 643, 647, 821, 829, 853, 863, 877, 887, 1087, 1097, 1277, 1279, 1283, 1297, 1307, 1423, 1433, 1447, 1451, 1453, 1481, 1493, 1607, 1609
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 07 2004

Keywords

Comments

A098418(a(n)) = 1; subsequence of A098420.

Crossrefs

A098422 Primes occurring in exactly two prime triples (p,q,r) with p

Original entry on oeis.org

7, 19, 41, 43, 101, 109, 193, 197, 227, 229, 311, 313, 461, 463, 823, 827, 857, 859, 881, 883, 1091, 1093, 1301, 1303, 1427, 1429, 1483, 1489, 1871, 1877, 1997, 1999, 2083, 2087, 2687, 2689, 3253, 3257, 3461, 3467, 4517, 4519, 4787, 4789, 5231, 5233, 5651
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 07 2004

Keywords

Comments

A098418(a(n)) = 2; subsequence of A098420.

Crossrefs

Programs

  • Mathematica
    Select[Tally[Flatten[Select[Partition[Prime[Range[800]],3,1],#[[3]]- #[[1]] == 6&]]],#[[2]]==2&][[All,1]] (* Harvey P. Dale, Jun 01 2019 *)

A098423 Primes occurring in exactly three prime triples (p,q,r) with p

Original entry on oeis.org

11, 13, 17, 103, 107, 1487, 1873, 3463, 5653, 15733, 16063, 16067, 19423, 19427, 21017, 22277, 43783, 43787, 55337, 79693, 88813, 101113, 144167, 165707, 166847, 195737, 201827, 225347, 247607, 257863, 266683, 268817, 276043, 284743
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 07 2004

Keywords

Comments

A098418(a(n)) = 3; subsequence of A098420.
This sequence consists of all integers of the form (prime(m)*prime(m+4)+36)/prime(m+2), for m>0, where prime(m) = A000040(m). Also note that the integers resulting from that rule equal prime(m+2), therefore a(n) also consists of all integers of the form sqrt[prime(m)*prime(m+4)+36]. - Richard R. Forberg, Jan 11 2016

Examples

			A000040(27)=103: A007529(11)=103, A098414(10)=103 and A098415(9)=103, therefore 103 is a term.
		

Crossrefs

A309354 Primes of the form p+q+r where p < q < r = p+6 are consecutive primes.

Original entry on oeis.org

23, 31, 41, 59, 131, 211, 311, 941, 1049, 1381, 1931, 2579, 3271, 3911, 4289, 4451, 4999, 6421, 6719, 8059, 8069, 9769, 10391, 10399, 10589, 11551, 12011, 14369, 16249, 20479, 23269, 23629, 26591, 27031, 28309, 31379, 33349, 33521, 35339, 35491, 39019, 41081
Offset: 1

Views

Author

Philip Mizzi, Jul 25 2019

Keywords

Examples

			P = 5 (prime),
P + 2 = 7 (prime),
P + 6 = 11 (prime),
and 5 + 7 + 11 = 23 is prime and is a term.
P = 7 (prime),
P + 4 = 11 (prime),
P + 6 = 13 (prime)
and 7 + 11 + 13 = 31 is prime and is a term.
However, (p,q,r) = (13,17,19) fails because the sum is not a prime.
		

Crossrefs

Cf. A098420.

Programs

  • Mathematica
    Select[Total /@ Select[Partition[Prime@Range[2000], 3, 1], #[[3]] == 6 + #[[1]] &], PrimeQ] (* Giovanni Resta, Jul 25 2019 *)

Extensions

More terms from Giovanni Resta, Jul 25 2019
Showing 1-6 of 6 results.