A098420 Members of prime triples (p,q,r) with p < q < r = p + 6.
5, 7, 11, 13, 17, 19, 23, 37, 41, 43, 47, 67, 71, 73, 97, 101, 103, 107, 109, 113, 191, 193, 197, 199, 223, 227, 229, 233, 277, 281, 283, 307, 311, 313, 317, 347, 349, 353, 457, 461, 463, 467, 613, 617, 619, 641, 643, 647, 821, 823, 827, 829, 853, 857, 859, 863
Offset: 1
Keywords
Links
- Paul Shubhankar, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013
- Paul Shubhankar, Legendre, Grimm, Balanced Prime, Prime triple, Polignac's conjecture, a problem and 17 tips with proof to solve problems on number theory, International Journal of Engineering and Technical Research (IJETR), Volume-1, Issue-10, December 2013.
- Eric Weisstein's World of Mathematics, Prime Triplet
Programs
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[p2=p+2]&&PrimeQ[p6=p+6], AppendTo[lst, p];AppendTo[lst, p2];AppendTo[lst, p6]];If[PrimeQ[p4=p+4]&&PrimeQ[p6=p+6], AppendTo[lst, p];AppendTo[lst, p4];AppendTo[lst, p6]], {n, 6!}];Union[lst] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
Comments