cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098428 Number of sexy prime pairs (p, p+6) with p <= n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 07 2004

Keywords

Comments

Since there are 2 congruence classes of sexy prime pairs, (-1, -1) (mod 6) and (+1, +1) (mod 6), the number of sexy prime pairs up to n is the sum of the number of sexy prime pairs for each class, expected to be asymptotically the same for both (with the expected Chebyshev bias against the quadratic residue class (+1, +1) (mod 6), which doesn't affect the asymptotic distribution among the 2 classes). - Daniel Forgues, Aug 05 2009

Examples

			The first sexy prime pairs are: (5,11), (7,13), (11,17), (13,19), ...
therefore the sequence starts: 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, ...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[PrimeQ[n]&&PrimeQ[n+6],1,0],{n,100}]] (* Harvey P. Dale, Feb 08 2015 *)
  • PARI
    apply( {A098428(n,o=2,q=o,c)=forprime(p=1+q, n+6, (o+6==p)+((o=q)+6==q=p) && c++);c}, [1..99]) \\ M. F. Hasler, Jan 02 2020
    [#[p:p in PrimesInInterval(1,n)| IsPrime(p+6)]:n in [1..100]]; // Marius A. Burtea, Jan 03 2020

Formula

a(n) = # { p in A023201 | p <= n } = number of elements in intersection of A023201 and [1,n]. - M. F. Hasler, Jan 02 2020

Extensions

Edited by Daniel Forgues, Aug 01 2009, M. F. Hasler, Jan 02 2020