A098473 Triangle T(n,k) read by rows, T(n, k) = binomial(2*k, k)*binomial(n, k), 0<=k<=n.
1, 1, 2, 1, 4, 6, 1, 6, 18, 20, 1, 8, 36, 80, 70, 1, 10, 60, 200, 350, 252, 1, 12, 90, 400, 1050, 1512, 924, 1, 14, 126, 700, 2450, 5292, 6468, 3432, 1, 16, 168, 1120, 4900, 14112, 25872, 27456, 12870, 1, 18, 216, 1680, 8820, 31752, 77616, 123552, 115830
Offset: 0
Examples
Rows begin 1; 1, 2; 1, 4, 6; 1, 6, 18, 20; 1, 8, 36, 80, 70; 1, 10, 60, 200, 350, 252;
Links
- Indranil Ghosh, Rows 0..125, flattened
- O. T. Dasbach, A natural series for the natural logarithm, Electronic Journal of Combinatorics, (15) 2008 #N5.
Crossrefs
Programs
-
Maple
A098473 := proc(n,k) binomial(2*k,k)*binomial(n,k) ; end proc:
-
Mathematica
Table[Binomial[2k,k]Binomial[n,k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Aug 15 2020 *)
-
PARI
T(n,k)=binomial(2*k, k)*binomial(n, k); for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); /* as triangle */
Formula
T(n, k) = binomial(2*k, k)*binomial(n, k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Sep 28 2007
From Peter Bala, Jun 06 2011: (Start)
O.g.f.: 1/sqrt(1 - t)*1/sqrt(1 - t*(1 + 4*x)) = 1 + (2*x + 1)*t + (1 + 4*x + 6*x^2)*t^2 + ....
Let R_n(x) denote the row generating polynomials of this triangle, which begin
R_1(x) = 1 + 2*x, R_2(x) = 1 + 4*x + 6*x^2, R_3(x) = 1 + 6*x + 18*x^2 + 20*x^3.
Dasbach gives the following slowly converging series for the logarithm function:
log(x) = Sum_{n >= 1} 1/n*R_n(-1/x), valid for x >= 4.
Comments