cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098536 Expansion of 1/((1-x)^3 - 9*x^4)^(1/3).

Original entry on oeis.org

1, 1, 1, 1, 4, 13, 31, 61, 124, 295, 757, 1873, 4402, 10237, 24421, 59701, 146455, 356308, 862810, 2096632, 5127391, 12583513, 30886735, 75775729, 186054142, 457662265, 1127659903, 2781162079, 6862930768, 16945704721, 41876228125, 103573882633, 256359901387, 634900971064
Offset: 0

Views

Author

Paul Barry, Sep 13 2004

Keywords

Comments

Binomial transform of A098535.

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q,30); Coefficients(R!(1/((1-x)^3-9*x^4)^(1/3))); // G. C. Greubel, Jan 17 2018
  • Maple
    with(FormalPowerSeries): # requires Maple 2022
    re:= subs(n=n-1, FindRE(1/((1-x)^3 - 9*x^4)^(1/3), x, a(n)));
    # re = Mathar's recurrence
    f:= gfun:-rectoproc({re, a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=4}, a(n), remember): map(f, [$0..30]); # Georg Fischer, Oct 23 2022
  • Mathematica
    CoefficientList[Series[1/((1-x)^3-9*x^4)^(1/3),{x,0,40}],x] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    x='x+O('x^30); Vec(1/((1-x)^3-9*x^4)^(1/3)) \\ G. C. Greubel, Jan 17 2018
    

Formula

Recurrence: n*a(n) +(-3*n+2)*a(n-1) +(3*n-4)*a(n-2) +(-n+2)*a(n-3) + 3*(-3*n+8)*a(n-4)=0. - R. J. Mathar, Nov 10 2014
a(n) = Sum_{k=0..floor(n/4)} (-9)^k * binomial(-1/3,k) * binomial(n-k,n-4*k). - Seiichi Manyama, Oct 04 2024