A098565 Numbers that appear as binomial coefficients exactly 6 times.
120, 210, 1540, 7140, 11628, 24310, 61218182743304701891431482520
Offset: 1
Links
- Jean-Marie de Koninck, Nicolas Doyon, and William Verreault, Repetitions of multinomial coefficients and a generalization of Singmaster's conjecture, arXiv:2107.09107 [math.NT], 2021.
- Zoe Griffiths, My MegaFavNumber: 61,218,182,743,304,701,891,431,482,520, YouTube video, 2020.
- David Singmaster, How Often Does An Integer Occur As A Binomial Coefficient?, American Mathematical Monthly, 78(4), 1971, pp. 385-386; also on Fermat's Library.
- Wikipedia, Singmaster's conjecture
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a098565 n = a098565_list !! (n-1) a098565_list = map (+ 2 ) $ elemIndices 3 a059233_list -- Reinhard Zumkeller, Dec 24 2012
Formula
A059233(a(n)) = 3. - Reinhard Zumkeller, Dec 24 2012
Extensions
a(7) from T. D. Noe, Jul 13 2005