cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A098568 Triangle of triangular binomial coefficients, read by rows, where column k has the g.f.: 1/(1-x)^((k+1)*(k+2)/2) for k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 56, 55, 15, 1, 1, 21, 126, 220, 120, 21, 1, 1, 28, 252, 715, 680, 231, 28, 1, 1, 36, 462, 2002, 3060, 1771, 406, 36, 1, 1, 45, 792, 5005, 11628, 10626, 4060, 666, 45, 1, 1, 55, 1287, 11440, 38760, 53130, 31465, 8436
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2004

Keywords

Comments

The row sums form A098569: {1,2,5,14,43,143,510,1936,7775,32869,...}. How do the terms of row k tend to be distributed as k grows?
Remarkably, column k of the matrix inverse (A121434) equals signed column k of the triangular matrix power: A107876^(k*(k+1)/2) for k >= 0. - Paul D. Hanna, Aug 25 2006
Surprisingly, the row sums (A098569) equal the row sums of triangle A131338. - Paul D. Hanna, Aug 30 2007
Number of sequences S = s(1)s(2)...s(n) such that S contains m 0's, for 1<=j<=n, s(j)Frank Ruskey, Apr 15 2011
As a rectangular array read by antidiagonals R(n,k) (n>=2, k>=0) is the number of labeled graphs on n nodes that have exactly k arcs where multiple arcs are allowed to connect distinct vertex pairs. R(n,k) = C(C(n,2)+k-1,k). See example below. - Geoffrey Critzer, Nov 12 2011

Examples

			G.f.s of columns: 1/(1-x), 1/(1-x)^3, 1/(1-x)^6, 1/(1-x)^10, 1/(1-x)^15, ...
Rows begin:
  1;
  1,  1;
  1,  3,    1;
  1,  6,    6,     1;
  1, 10,   21,    10,      1;
  1, 15,   56,    55,     15,      1;
  1, 21,  126,   220,    120,     21,      1;
  1, 28,  252,   715,    680,    231,     28,     1;
  1, 36,  462,  2002,   3060,   1771,    406,    36,     1;
  1, 45,  792,  5005,  11628,  10626,   4060,   666,    45,    1;
  1, 55, 1287, 11440,  38760,  53130,  31465,  8436,  1035,   55,  1;
  1, 66, 2002, 24310, 116280, 230230, 201376, 82251, 16215, 1540, 66, 1; ...
From _Frank Ruskey_, Apr 15 2011: (Start)
In reference to comment about s(1)s(2)...s(n) above,
   a(4,2) = 6 = |{0012, 0013, 0023, 0101, 0103, 0120}|  and
   a(4,3) = 6 = |{0001, 0002, 0003, 0010, 0020, 0100}|. (End)
From _Geoffrey Critzer_, Nov 12 2011: (Start)
In reference to comment about multigraphs above,
  1,    1,    1,    1,    1,     1,     ...  2 nodes
  1,    3,    6,    10,   15,    21,    ...  3 nodes
  1,    6,    21,   56,   126,   252,   ...  .
  1,    10,   55,   220,  715,   2002,  ...  .
  1,    15,   120,  680,  3060,  11628, ...  .
  1,    21,   231,  1771, 10626, 58130, ...  . (End)
		

Crossrefs

Cf. A098569. A290428 (unlabeled graphs).
Cf. A121434 (inverse); variants: A122175, A122176, A122177; A107876.
Cf. A131338.

Programs

  • Mathematica
    t[n_, k_] = Binomial[(k+1)*(k+2)/2 + n-k-1, n-k]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Jul 18 2011 *)
  • PARI
    {T(n,k)=binomial((k+1)*(k+2)/2+n-k-1,n-k)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n, k) = binomial((k+1)*(k+2)/2 + n-k-1, n-k).

A131338 Triangle, read by rows of n*(n+1)/2 + 1 terms, that starts with a '1' in row 0 with row n consisting of n '1's followed by the partial sums of the prior row.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2007

Keywords

Examples

			Triangle begins:
1;
1, 1;
1,1, 1,2;
1,1,1, 1,2,3,5;
1,1,1,1, 1,2,3,4,6,9,14;
1,1,1,1,1, 1,2,3,4,5,7,10,14,20,29,43;
1,1,1,1,1,1, 1,2,3,4,5,6,8,11,15,20,27,37,51,71,100,143;
1,1,1,1,1,1,1, 1,2,3,4,5,6,7,9,12,16,21,27,35,46,61,81,108,145,196,267,367,510; ...
Row sums equal the row sums (A098569) of triangle A098568,
where A098568(n, k) = binomial( (k+1)*(k+2)/2 + n-k-1, n-k):
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 21, 10, 1;
1, 15, 56, 55, 15, 1;
1, 21, 126, 220, 120, 21, 1; ...
		

Crossrefs

Cf. A098568, A098569 (row sums), A121690, A183202.
Cf. A214403 (variant).

Programs

  • PARI
    T(n,k)=if(k>n*(n+1)/2 || k<0,0,if(k<=n,1,sum(i=0,k-n,T(n-1,i))))
    for(n=0, 10, for(k=0, n*(n+1)/2, print1(T(n, k), ", ")); print(""))

Formula

T(n,k) = Sum_{i=0..k-n} T(n-1,i) for k>n, else T(n,k)=1 for n>=k>=0.
Right border: T(n+1, (n+1)*(n+2)/2) = A098569(n) = Sum_{k=0..n} C( (k+1)*(k+2)/2 + n-k-1, n-k).
T(n, n*(n-1)/2 + 1) = Sum_{k=0..n-1} C(k*(k+1)/2, n-k) = A121690(n-1) for n>=1. - Paul D. Hanna, Aug 30 2007

A326423 G.f. A(x) satisfies: Sum_{n>=0} A(x)^(n*(n+1)/2) * x^n = Sum_{n>=0} x^n / (1-x)^(n*(n-1)/2).

Original entry on oeis.org

1, 0, 1, 1, 4, 11, 39, 147, 598, 2577, 11669, 55156, 270938, 1378577, 7247494, 39290662, 219304105, 1258592815, 7418414658, 44863100701, 278117328554, 1765909629266, 11475651209600, 76267987517000, 518046275820877, 3593989140928928, 25450794447346211, 183860936257142088, 1354254148649619126, 10164913983190913353, 77710718331267769117
Offset: 0

Views

Author

Paul D. Hanna, Jul 03 2019

Keywords

Examples

			G.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 11*x^5 + 39*x^6 + 147*x^7 + 598*x^8 + 2577*x^9 + 11669*x^10 + 55156*x^11 + 270938*x^12 + 1378577*x^13 + 7247494*x^14 + ...
such that the following series are equal
B(x) = 1 + A(x)*x + A(x)^3*x^2 + A(x)^6*x^3 + A(x)^10*x^4 + A(x)^15*x^5 + A(x)^21*x^6 + A(x)^28*x^7 + A(x)^36*x^8 + A(x)^45*x^9 + ...
and
B(x) = 1 + x + x^2/(1-x) + x^3/(1-x)^3 + x^4/(1-x)^6 + x^5/(1-x)^10 + x^6/(1-x)^15 + x^7/(1-x)^21 + x^8/(1-x)^28 + x^9/(1-x)^36 + ...
where
B(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 43*x^6 + 143*x^7 + 510*x^8 + 1936*x^9 + 7775*x^10 + 32869*x^11 + 145665*x^12 + ... + A098569(n-1)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A[#A]=polcoeff( sum(m=0,#A, x^m/(1-x +x*O(x^#A))^(m*(m-1)/2) - x^m*Ser(A)^(m*(m+1)/2) ),#A)); A[n+1]}
    for(n=0,35,print1(a(n),", "))

A183202 Triangle, read by rows, where T(n,k) equals the sum of (n-k) terms in row n of triangle A131338 starting at position nk - k(k-1)/2, with the main diagonal formed from the row sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 3, 5, 4, 6, 10, 9, 14, 5, 10, 22, 34, 29, 43, 6, 15, 40, 84, 122, 100, 143, 7, 21, 65, 169, 334, 463, 367, 510, 8, 28, 98, 300, 738, 1390, 1851, 1426, 1936, 9, 36, 140, 489, 1426, 3345, 6043, 7767, 5839, 7775, 10, 45, 192, 749, 2510, 6990, 15735
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2010

Keywords

Examples

			Triangle begins:
1;
1,1;
2,1,2;
3,3,3,5;
4,6,10,9,14;
5,10,22,34,29,43;
6,15,40,84,122,100,143;
7,21,65,169,334,463,367,510;
8,28,98,300,738,1390,1851,1426,1936;
9,36,140,489,1426,3345,6043,7767,5839,7775;
10,45,192,749,2510,6990,15735,27374,34097,25094,32869; ...
The rows are derived from triangle A131338 by summing terms in the following manner:
(1);
(1),(1);
(1+1),(1),(2);
(1+1+1),(1+2),(3),(5);
(1+1+1+1),(1+2+3),(4+6),(9),(14);
(1+1+1+1+1),(1+2+3+4),(5+7+10),(14+20),(29),(43);
(1+1+1+1+1+1),(1+2+3+4+5),(6+8+11+15),(20+27+37),(51+71),(100),(143); ...
where row n of triangle A131338 consists of n '1's followed by the partial sums of the prior row.
		

Crossrefs

Cf. A131338, A098568, A098569 (row sums), A183203 (antidiagonal sums).

Programs

  • PARI
    {A131338(n, k)=if(k>n*(n+1)/2||k<0,0,if(k<=n,1,sum(i=0, k-n,A131338(n-1,i))))}
    {T(n,k)=if(n==k,A131338(n,n*(n+1)/2),sum(j=n*k-k*(k-1)/2,n*k-k*(k-1)/2+n-k-1,A131338(n,j)))}
Showing 1-4 of 4 results.