cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098575 a(n) = Sum_{k=0..floor(n/4)} C(n-2*k,2*k)*2^k.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 13, 21, 35, 63, 117, 213, 379, 671, 1197, 2149, 3859, 6911, 12357, 22101, 39563, 70847, 126845, 227045, 406371, 727391, 1302101, 2330901, 4172443, 7468767, 13369293, 23931621, 42838835, 76683583, 137266917, 245713493
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[1, 1, 1, 1]; [n le 4 select I[n] else 2*Self(n-1)-Self(n-2)+2*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012
    
  • Mathematica
    CoefficientList[Series[(1-x)/((1-x)^2-2x^4),{x,0,40}],x] (* Vincenzo Librandi, Jun 17 2012 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/((1-x)^2-2*x^4)) \\ G. C. Greubel, Feb 03 2018

Formula

G.f.: (1-x)/((1-x)^2-2*x^4).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-4).