A098586 a(n) = (1/2) * (5*P(n+1) + P(n) - 1), where P(k) are the Pell numbers A000129.
2, 5, 13, 32, 78, 189, 457, 1104, 2666, 6437, 15541, 37520, 90582, 218685, 527953, 1274592, 3077138, 7428869, 17934877, 43298624, 104532126, 252362877, 609257881, 1470878640, 3551015162, 8572908965, 20696833093, 49966575152, 120629983398, 291226541949
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Hermann Stamm-Wilbrandt, 4 interlaced bisections
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
Programs
-
Magma
I:=[2,5,13]; [n le 3 select I[n] else 3*Self(n-1) - Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 03 2018
-
Maple
A:= LREtools[REtoproc](a(n) = 3*a(n-1) - a(n-2) - a(n-3), a(n), {a(0)=2, a(1)=5, a(2)=13}): seq(A(n),n=0..100); # Robert Israel, Aug 26 2014
-
Mathematica
LinearRecurrence[{3, -1, -1}, {2, 5, 13}, 28] (* Hermann Stamm-Wilbrandt, Aug 26 2014 *) CoefficientList[Series[(2-x)/((1-x)*(1-2*x-x^2)), {x,0,50}], x] (* G. C. Greubel, Feb 03 2018 *)
-
PARI
Vec((2-x)/((1-x)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, Mar 16 2016
Formula
a(n) = 3*a(n-1) - a(n-2) - a(n-3) with a(0)=2, a(1)=5, a(2)=13. - Hermann Stamm-Wilbrandt, Aug 26 2014
G.f.: (2-x)/((1-x)*(1-2*x-x^2)). - Robert Israel, Aug 26 2014
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - Hermann Stamm-Wilbrandt, Aug 27 2014
a(2*n-1) = A006451(2*n), for n>0. - Hermann Stamm-Wilbrandt, Aug 27 2014
a(2*n) = A124124(2*n+2). - Hermann Stamm-Wilbrandt, Aug 27 2014
a(n) = (-2+(5-3*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(5+3*sqrt(2)))/4. - Colin Barker, Mar 16 2016
Extensions
Formula supplied by Thomas Baruchel, Oct 03 2004
More terms from Emeric Deutsch, Nov 17 2004