A098592 Number of primes between n*30 and (n+1)*30.
10, 7, 7, 6, 5, 6, 5, 6, 5, 5, 4, 6, 5, 4, 6, 5, 5, 2, 5, 5, 5, 6, 4, 4, 4, 5, 3, 6, 4, 4, 4, 4, 4, 5, 5, 4, 6, 3, 3, 4, 5, 4, 4, 6, 2, 3, 3, 5, 4, 7, 2, 5, 4, 6, 3, 4, 4, 3, 4, 4, 3, 2, 7, 3, 3, 3, 5, 5, 3, 5, 3, 5, 2, 3, 4, 4, 5, 3, 4, 7, 3, 4, 3, 1, 5, 3, 3, 3, 4, 7, 5, 4, 3, 5, 3, 4, 4, 3, 4, 2, 4, 3, 5, 2, 2, 3
Offset: 0
Examples
a(1)=7 because there are 7 primes in the interval (30,60): 31,37,41,43,47,53,59. a(26)=3 because the interval of length 30 following 26*30=780 contains 3 primes: 787, 797 and 809.
Links
- Dennis Martin, Proofs Regarding Primorial Patterns [Cached copy, with permission of the author].
- Hugo Pfoertner, Patterns count table.
Crossrefs
Programs
-
FORTRAN
! See links given in A098591.
-
PARI
a(n) = primepi(30*(n+1)) - primepi(30*n); \\ Michel Marcus, Apr 04 2020
-
Python
from sympy import primerange def a(n): return len(list(primerange(n*30, (n+1)*30))) print([a(n) for n in range(106)]) # Michael S. Branicky, Oct 07 2021
Extensions
Edited by N. J. A. Sloane, Jun 12 2009 at the suggestion of R. J. Mathar
Comments