A098593 A triangle of Krawtchouk coefficients.
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -2, -2, 1, 1, -3, -2, -2, -3, 1, 1, -4, -1, 0, -1, -4, 1, 1, -5, 1, 3, 3, 1, -5, 1, 1, -6, 4, 6, 6, 6, 4, -6, 1, 1, -7, 8, 8, 6, 6, 8, 8, -7, 1, 1, -8, 13, 8, 2, 0, 2, 8, 13, -8, 1, 1, -9, 19, 5, -6, -10, -10, -6, 5, 19, -9, 1, 1, -10, 26, -2, -17, -20, -20, -20, -17, -2, 26, -10, 1, 1, -11, 34, -14, -29, -25
Offset: 0
Examples
Rows begin {1}, {1,1}, {1,0,1}, {1,-1,-1,1}, {1,-2,-2,-2,1}, ... From _Paul Barry_, Oct 05 2010: (Start) Triangle begins 1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -2, -2, 1, 1, -3, -2, -2, -3, 1, 1, -4, -1, 0, -1, -4, 1, 1, -5, 1, 3, 3, 1, -5, 1, 1, -6, 4, 6, 6, 6, 4, -6, 1, 1, -7, 8, 8, 6, 6, 8, 8, -7, 1, 1, -8, 13, 8, 2, 0, 2, 8, 13, -8, 1 Production matrix (related to large Schroeder numbers A006318) begins 1, 1, 0, -1, 1, 0, -2, -1, 1, 0, -6, -2, -1, 1, 0, -22, -6, -2, -1, 1, 0, -90, -22, -6, -2, -1, 1, 0, -394, -90, -22, -6, -2, -1, 1, 0, -1806, -394, -90, -22, -6, -2, -1, 1, 0, -8558, -1806, -394, -90, -22, -6, -2, -1, 1 Production matrix of inverse is -1, 1, -2, 1, 1, -4, 2, 1, 1, -8, 4, 2, 1, 1, -16, 8, 4, 2, 1, 1, -32, 16, 8, 4, 2, 1, 1, -64, 32, 16, 8, 4, 2, 1, 1, -128, 64, 32, 16, 8, 4, 2, 1, 1, -256, 128, 64, 32, 16, 8, 4, 2, 1, 1 (End)
References
- P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Paul Barry, A note on Krawtchouk Polynomials and Riordan Arrays, JIS 11 (2008) 08.2.2
- P. Feinsilver and J. Kocik, Krawtchouk polynomials and Krawtchouk matrices, arxiv:quant-ph/0702073, 2007.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[Binomial[n - k, k - j]*Binomial[k, j]*(-1)^(k - j), {j, 0, n}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
-
PARI
for(n=0,10, for(k=0,n, print1(sum(i=0,k, binomial(n-k, k-i) *binomial(k, i)*(-1)^(k-i)), ", "))) \\ G. C. Greubel, Oct 15 2017
Formula
T(n, k) = Sum_{i=0..k} binomial(n-k, k-i)*binomial(k, i)*(-1)^(k-i), k<=n.
T(n, k) = T(n-1, k) + T(n-1, k-1) - 2*T(n-2, k-1) (n>0). - Paul Barry, Sep 24 2004
T(n, k) = [k<=n]*Hypergeometric2F1(-k,k-n;1;-1). - Paul Barry, Jan 24 2011
E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} (-1)^k*binomial(n,k)* x^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 2*x + x^2/2) = 1 - x - 2*x^2/2! - 2*x^3/3! - x^4/4! + x^5/5! + .... - Peter Bala, Mar 05 2017
Comments