cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098601 Expansion of (1+2*x)/((1+x)*(1-x^2-x^3)).

Original entry on oeis.org

1, 1, 0, 3, 0, 4, 2, 5, 5, 8, 9, 14, 16, 24, 29, 41, 52, 71, 92, 124, 162, 217, 285, 380, 501, 666, 880, 1168, 1545, 2049, 2712, 3595, 4760, 6308, 8354, 11069, 14661, 19424, 25729, 34086, 45152, 59816, 79237, 104969, 139052, 184207, 244020, 323260
Offset: 0

Views

Author

Paul Barry, Sep 17 2004

Keywords

Comments

Diagonal sums of A098599.
The signed sequence 1,-1,0,-3,0,-4,... gives the diagonal sums of A100218. - Paul Barry, Nov 09 2004

Crossrefs

Programs

  • Magma
    I:=[1,1,0,3]; [n le 4 select I[n] else -Self(n-1) +Self(n-2) +2*Self(n-3) +Self(n-4): n in [1..55]]; // G. C. Greubel, Mar 27 2024
    
  • Mathematica
    CoefficientList[Series[(1+2x)/((1+x)(1-x^2-x^3)),{x,0,50}],x] (* or *) LinearRecurrence[{-1,1,2,1},{1,1,0,3},50] (* Harvey P. Dale, Dec 14 2011 *)
  • SageMath
    def A098601(n): return sum( binomial(k, n-2*k) + binomial(k-1, n-2*k-1) for k in range(1+n//2))
    [A098601(n) for n in range(56)] # G. C. Greubel, Mar 27 2024

Formula

G.f.: x/((1+x)*(1-x^2-x^3)) + 1/(1-x^2-x^3).
a(n) = Sum_{k=0..floor(n/2)} (binomial(k, n-2*k) + binomial(k-1, n-2*k-1)).
a(n) = -a(n-1) + a(n-2) + 2*a(n-3) + a(n-4).
Inverse binomial transform of A135364. - Paul Curtz, Apr 25 2008