cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098647 Trace sequence associated to the 4 X 4 Krawtchouk matrix and its transpose.

Original entry on oeis.org

1, 12, 224, 4608, 96256, 2015232, 42205184, 883949568, 18513657856, 387755016192, 8121246285824, 170093589823488, 3562486393470976, 74613683694600192, 1562729279488262144, 32730226951263879168
Offset: 0

Views

Author

Paul Barry, Sep 18 2004

Keywords

Comments

Let A=[1,1,1,1;3,1,-1,-3;3,-1,-1,3;1,-1,1,-1], the 4 X 4 Krawtchouk matrix. Then a(n)=trace((A*A')^n)/4.
Twelfth binomial transform of ((4*sqrt(5))^n +(-4*sqrt(5))^n)/2, with g.f. 1/(1-80*x^2).

Crossrefs

Cf. A098646.

Formula

G.f.: (1-12*x)/(1-24*x+64*x^2).
a(n) = ((12+4*sqrt(5))^n+(12-4*sqrt(5))^n)/2.
a(n) = 2^(n-1)*((sqrt(5)-1)^(2*n)+(sqrt(5)+1)^(2*n)).
a(n) = 4^n*A098648(n). - R. J. Mathar, Nov 11 2013

A282124 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 430", based on the 5-celled von Neumann neighborhood.

Original entry on oeis.org

1, 3, 3, 15, 11, 63, 43, 255, 171, 1023, 683, 4095, 2731, 16383, 10923, 65535, 43691, 262143, 174763, 1048575, 699051, 4194303, 2796203, 16777215, 11184811, 67108863, 44739243, 268435455, 178956971, 1073741823, 715827883, 4294967295, 2863311531, 17179869183
Offset: 0

Views

Author

Robert Price, Feb 06 2017

Keywords

Comments

Initialized with a single black (ON) cell at stage zero.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Mathematica
    CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
    code = 430; stages = 128;
    rule = IntegerDigits[code, 2, 10];
    g = 2 * stages + 1; (* Maximum size of grid *)
    a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
    ca = a;
    ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
    PrependTo[ca, a];
    (* Trim full grid to reflect growth by one cell at each stage *)
    k = (Length[ca[[1]]] + 1)/2;
    ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
    Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}]

Formula

Conjectures from Colin Barker, Feb 07 2017: (Start)
a(n) = (-1 + 2*(-1)^n - (-1)^n*2^(1+n) + 2^(2+n)) / 3.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
G.f.: (1 + 3*x - 2*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)
Conjectures from Paul Curtz, Jun 10 2019: (Start)
a(n) = A001045(n+1)*(period 2: repeat[1, 3]).
a(n+4) = a(n) + 10*A081631(n).
a(2*n+1) = 2^(2*n+2) -1.
a(n+2) = a(n) + A098646(n+1).
(End)

A308663 Partial sums of A097805.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 8, 9, 12, 15, 16, 16, 17, 21, 27, 31, 32, 32, 33, 38, 48, 58, 63, 64, 64, 65, 71, 86, 106, 121, 127, 128, 128, 129, 136, 157, 192, 227, 248, 255, 256, 256, 257, 265, 293, 349, 419, 475, 503, 511, 512
Offset: 0

Views

Author

Paul Curtz, Jun 15 2019

Keywords

Comments

Curtz (1965), page 15, from right to left, gives (F1):
1/2;
1/4, 3/4;
1/8, 4/8, 7/8;
1/16, 5/16, 11/16, 15/16;
... .
Numerators + Denominators = (C) =
3;
5, 7;
9, 12, 15;
17, 21, 27, 31;
... .
This is the current sequence without powers of 2.
The triangle (P) for a(n) is
1;
1, 2;
2, 3, 4;
4, 5, 7, 8;
8, 9, 12, 15, 16;
... .
(C) is the core of (P).
Extension of (F1). (F2) =
0/1;
0/1, 1/1;
0/2, 1/2, 2/2;
0/4, 1/4, 3/4, 4/4;
0/8, 1/8, 4/8, 7/8, 8/8;
... .
(Mentioned, without 0's, op. cit., page 16.)
a(n) = Numerators + Denominators.
Row sums of triangle (P): A084858(n).
From right to left, with alternating signs: 1, 1, 3, 2, 12, 8, 48, 32, ..., see A098646.
For triangle (C), row sums give A167667(n+1).
From right to left, with alternating signs: A098646(n).
Rank of A016116(n): 0 together with A117142.

Crossrefs

Cf. A097805.

Formula

T(n,k) = ceiling(2^(n-1)) + Sum_{j=0..k-1} binomial(n-1,j). - Alois P. Heinz, Jun 15 2019
a(n+1) = a(n) + A097805(n+1) for n >= 0.

Extensions

Edited by N. J. A. Sloane, Sep 15 2019
Showing 1-3 of 3 results.