A098700 Numbers n such that x' = n has no integer solution, where x' is the arithmetic derivative of x.
2, 3, 11, 17, 23, 29, 35, 37, 47, 53, 57, 65, 67, 79, 83, 89, 93, 97, 107, 117, 125, 127, 137, 145, 149, 157, 163, 173, 177, 179, 189, 197, 205, 207, 209, 217, 219, 223, 233, 237, 245, 257, 261, 277, 289, 303, 305, 307, 317, 323, 325, 337, 345, 353, 367, 373
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..5000
- Victor Ufnarovski and Bo Ahlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003. (See p. 7.)
Crossrefs
Programs
-
Haskell
a098700 n = a098700_list !! (n-1) a098700_list = filter (\z -> all (/= z) $ map a003415 [1 .. a002620 z]) [2..] -- Reinhard Zumkeller, Mar 18 2014
-
Mathematica
a[1] = 0; a[n_] := Block[{f = Transpose[ FactorInteger[ n]]}, If[ PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; b = Table[ -1, {500}]; b[[1]] = 1; Do[c = a[n]; If[c < 500 && b[[c + 1]] == 0, b[[c + 1]] = n], {n, 10^6}]; Select[ Range[500], b[[ # ]] == 0 &] dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; Select[Range[400], 0==Count[d1, # ]&]
-
PARI
list(lim)=my(v=List()); lim\=1; forfactored(n=1, lim^2, my(f=n[2],t); listput(v, n[1]*sum(i=1, #f~, f[i, 2]/f[i, 1]))); setminus([1..lim], Set(v)); \\ Charles R Greathouse IV, Oct 21 2021
-
Python
from itertools import count, islice from sympy import factorint def A098700_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:all(map(lambda m:sum((m*e//p for p,e in factorint(m).items())) != n,range(1,(n**2>>1)+1))),count(max(startvalue,2))) A098700_list = list(islice(A098700_gen(),30)) # Chai Wah Wu, Sep 12 2022
Extensions
Corrected and extended by T. D. Noe, Oct 12 2004
Comments