A098703 a(n) = (3^n + phi^(n-1) + (-phi)^(1-n)) / 5, where phi denotes the golden ratio A001622.
0, 1, 2, 6, 17, 50, 148, 441, 1318, 3946, 11825, 35454, 106328, 318929, 956698, 2869950, 8609617, 25828474, 77484812, 232453449, 697358750, 2092073666, 6276216817, 18828643686, 56485920112, 169457742625, 508373199218, 1525119551286
Offset: 0
Examples
a(2) = 2 because 3^2 = 9, Luc(1) = 1 and (9 + 1) / 5 = 2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein, Golden Ratio
- Eric Weisstein, Lucas Number
- Eric Weisstein, Fibonacci Number
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-3).
Crossrefs
Programs
-
Magma
I:=[0,1,2]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2)-3*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 18 2018
-
Mathematica
f[n_] := (3^n + Fibonacci[n] + Fibonacci[n - 2])/5; Table[ f[n], {n, 0, 27}] (* Robert G. Wilson v, Nov 04 2004 *) LinearRecurrence[{4, -2, -3}, {0, 1, 2}, 30] (* Jean-François Alcover, Feb 17 2018 *)
-
SageMath
def A098703(n): return (3**n + lucas_number2(n-1,1,-1))//5 print([A098703(n) for n in range(21)]) # G. C. Greubel, Jun 02 2025
Formula
a(n) = (((1 + sqrt(5))^n - (1 - sqrt(5))^n) / (2^n*sqrt(5))) + ((3^n - (((1 + sqrt(5)) / 2)^(n+1) + ((1 - sqrt(5)) / 2)^(n+1))) / 5).
a(n) = (3^n + (((1 + sqrt(5)) / 2)^(n-1) + ((1 - sqrt(5)) / 2)^(n-1))) / 5.
a(n) = 4*a(n-1) - 2*a(n-2) - 3*a(n-3).
a(n) = 3^1 * a(n-1) - A000045(n-3), for n > 2.
a(n) = 3^2 * a(n-2) - A000285(n-4), for n > 3.
a(n) = 3^3 * a(n-3) - A022383(n-5), for n > 4.
Limit_{n -> oo} a(n) / a(n-1) = 3.
From Ross La Haye, Dec 21 2004: (Start)
a(n) = A101220(1,3,n).
Binomial transform of unsigned A084178.
G.f.: x*(1-2*x)/((1-3*x)*(1-x-x^2)). - Ross La Haye, Aug 09 2005
a(0) = 0, a(1) = 1, a(n) = a(n-1) + a(n-2) + 3^(n-2) for n > 1. - Ross La Haye, Aug 20 2005
Binomial transform of A052964 beginning {0,1,0,3,1,10,...}. - Ross La Haye, May 31 2006
Extensions
More terms from Robert G. Wilson v, Nov 04 2004
More terms from Ross La Haye, Dec 21 2004
Comments