A098737 Triangle read by rows: number of triangles formed by lines from two vertices of a triangle to the opposite side that segment the opposite sides into m and n segments. Since f(m,n) = f(n,m), it suffices to give the results in a triangular table.
1, 3, 8, 6, 15, 27, 10, 24, 42, 64, 15, 35, 60, 90, 125, 21, 48, 81, 120, 165, 216, 28, 63, 105, 154, 210, 273, 343, 36, 80, 132, 192, 260, 336, 420, 512, 45, 99, 162, 234, 315, 405, 504, 612, 729, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, 66, 143, 231, 330
Offset: 1
Examples
f(3, 5) is 60, from 1/2 * (3 * 5) * (3 + 5) or 1/2 * 15 * 8. The triangle f(m, n) starts: m\n 1 2 3 4 5 6 7 8 9 10 11 ... 1: 1 2: 3 8 3: 6 15 27 4: 10 24 42 64 5: 15 35 60 90 125 6: 21 48 81 120 165 216 7: 28 63 105 154 210 273 343 8: 36 80 132 192 260 336 420 512 9: 45 99 162 234 315 405 504 612 729 10: 55 120 195 280 375 480 595 720 855 1000 11: 66 143 231 330 440 561 693 836 990 1155 1331 ... reformatted and extended by _Wolfdieter Lang_, Dec 18 2020
References
- Sidney Coleman, Quantum Field Theory, Eds. Bryan Gin-ge Chen et al., World Scientific, 2019, eq. (37.8), p. 799.
Links
- Wikipedia, Clebsch-Gordan coefficients for SU(3)
Crossrefs
Programs
-
J
cap half * * +
-
Mathematica
t[m_, n_] := (m*n)(m + n)/2; Flatten[ Table[ t[m, n], {m, 10}, {n, m}]] (* Robert G. Wilson v, Nov 04 2004 *)
Formula
f(m, n) = 1/2 * (m * n) * (m + n).
G.f.: x*y*(1 + 4*x*y + x^2*(y - 9)*y - 3*x^3*(y - 1)*y + 3*x^4*y^2)/((1 - x)^3*(1 - x*y)^4). - Stefano Spezia, Oct 01 2023
Extensions
More terms from Robert G. Wilson v, Nov 04 2004
Comments