cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000578 The cubes: a(n) = n^3.

Original entry on oeis.org

0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507
Offset: 0

Views

Author

Keywords

Comments

a(n) is the sum of the next n odd numbers; i.e., group the odd numbers so that the n-th group contains n elements like this: (1), (3, 5), (7, 9, 11), (13, 15, 17, 19), (21, 23, 25, 27, 29), ...; then each group sum = n^3 = a(n). Also the median of each group = n^2 = mean. As the sum of first n odd numbers is n^2 this gives another proof of the fact that the n-th partial sum = (n(n + 1)/2)^2. - Amarnath Murthy, Sep 14 2002
Total number of triangles resulting from criss-crossing cevians within a triangle so that two of its sides are each n-partitioned. - Lekraj Beedassy, Jun 02 2004. See Propp and Propp-Gubin for a proof.
Also structured triakis tetrahedral numbers (vertex structure 7) (cf. A100175 = alternate vertex); structured tetragonal prism numbers (vertex structure 7) (cf. A100177 = structured prisms); structured hexagonal diamond numbers (vertex structure 7) (cf. A100178 = alternate vertex; A000447 = structured diamonds); and structured trigonal anti-diamond numbers (vertex structure 7) (cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Schlaefli symbol for this polyhedron: {4, 3}.
Least multiple of n such that every partial sum is a square. - Amarnath Murthy, Sep 09 2005
Draw a regular hexagon. Construct points on each side of the hexagon such that these points divide each side into equally sized segments (i.e., a midpoint on each side or two points on each side placed to divide each side into three equally sized segments or so on), do the same construction for every side of the hexagon so that each side is equally divided in the same way. Connect all such points to each other with lines that are parallel to at least one side of the polygon. The result is a triangular tiling of the hexagon and the creation of a number of smaller regular hexagons. The equation gives the total number of regular hexagons found where n = the number of points drawn + 1. For example, if 1 point is drawn on each side then n = 1 + 1 = 2 and a(n) = 2^3 = 8 so there are 8 regular hexagons in total. If 2 points are drawn on each side then n = 2 + 1 = 3 and a(n) = 3^3 = 27 so there are 27 regular hexagons in total. - Noah Priluck (npriluck(AT)gmail.com), May 02 2007
The solutions of the Diophantine equation: (X/Y)^2 - X*Y = 0 are of the form: (n^3, n) with n >= 1. The solutions of the Diophantine equation: (m^2)*(X/Y)^2k - XY = 0 are of the form: (m*n^(2k + 1), m*n^(2k - 1)) with m >= 1, k >= 1 and n >= 1. The solutions of the Diophantine equation: (m^2)*(X/Y)^(2k + 1) - XY = 0 are of the form: (m*n^(k + 1), m*n^k) with m >= 1, k >= 1 and n >= 1. - Mohamed Bouhamida, Oct 04 2007
Except for the first two terms, the sequence corresponds to the Wiener indices of C_{2n} i.e., the cycle on 2n vertices (n > 1). - K.V.Iyer, Mar 16 2009
Totally multiplicative sequence with a(p) = p^3 for prime p. - Jaroslav Krizek, Nov 01 2009
Sums of rows of the triangle in A176271, n > 0. - Reinhard Zumkeller, Apr 13 2010
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
Numbers n for which order of torsion subgroup t of the elliptic curve y^2 = x^3 - n is t = 2. - Artur Jasinski, Jun 30 2010
The sequence with the lengths of the Pisano periods mod k is 1, 2, 3, 4, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 16, 17, 6, 19, 20, ... for k >= 1, apparently multiplicative and derived from A000027 by dividing every ninth term through 3. Cubic variant of A186646. - R. J. Mathar, Mar 10 2011
The number of atoms in a bcc (body-centered cubic) rhombic hexahedron with n atoms along one edge is n^3 (T. P. Martin, Shells of atoms, eq. (8)). - Brigitte Stepanov, Jul 02 2011
The inverse binomial transform yields the (finite) 0, 1, 6, 6 (third row in A019538 and A131689). - R. J. Mathar, Jan 16 2013
Twice the area of a triangle with vertices at (0, 0), (t(n - 1), t(n)), and (t(n), t(n - 1)), where t = A000217 are triangular numbers. - J. M. Bergot, Jun 25 2013
If n > 0 is not congruent to 5 (mod 6) then A010888(a(n)) divides a(n). - Ivan N. Ianakiev, Oct 16 2013
For n > 2, a(n) = twice the area of a triangle with vertices at points (binomial(n,3),binomial(n+2,3)), (binomial(n+1,3),binomial(n+1,3)), and (binomial(n+2,3),binomial(n,3)). - J. M. Bergot, Jun 14 2014
Determinants of the spiral knots S(4,k,(1,1,-1)). a(k) = det(S(4,k,(1,1,-1))). - Ryan Stees, Dec 14 2014
One of the oldest-known examples of this sequence is shown in the Senkereh tablet, BM 92698, which displays the first 32 terms in cuneiform. - Charles R Greathouse IV, Jan 21 2015
From Bui Quang Tuan, Mar 31 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ... 2*n-1 as follows. The first column contains all the integers 1, 2, 3, ... 2*n-1. Each succeeding column is the same as the previous column but without the first and last items. The last column contains only n. The sum of all the numbers in the triangle is n^3.
Here is the example for n = 4, where 1 + 2*2 + 3*3 + 4*4 + 3*5 + 2*6 + 7 = 64 = a(4):
1
2 2
3 3 3
4 4 4 4
5 5 5
6 6
7
(End)
For n > 0, a(n) is the number of compositions of n+11 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Number of inequivalent face colorings of the cube using at most n colors such that each color appears at least twice. - David Nacin, Feb 22 2017
Consider A = {a,b,c} a set with three distinct members. The number of subsets of A is 8, including {a,b,c} and the empty set. The number of subsets from each of those 8 subsets is 27. If the number of such iterations is n, then the total number of subsets is a(n-1). - Gregory L. Simay, Jul 27 2018
By Fermat's Last Theorem, these are the integers of the form x^k with the least possible value of k such that x^k = y^k + z^k never has a solution in positive integers x, y, z for that k. - Felix Fröhlich, Jul 27 2018

Examples

			For k=3, b(3) = 2 b(2) - b(1) = 4-1 = 3, so det(S(4,3,(1,1,-1))) = 3*3^2 = 27.
For n=3, a(3) = 3 + (3*0^2 + 3*0 + 3*1^2 + 3*1 + 3*2^2 + 3*2) = 27. - _Patrick J. McNab_, Mar 28 2016
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 191.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 43, 64, 81.
  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 292.
  • T. Aaron Gulliver, "Sequences from cubes of integers", International Mathematical Journal, 4 (2003), no. 5, 439 - 445. See http://www.m-hikari.com/z2003.html for information about this journal. [I expanded the reference to make this easier to find. - N. J. A. Sloane, Feb 18 2019]
  • J. Propp and A. Propp-Gubin, "Counting Triangles in Triangles", Pi Mu Epsilon Journal (to appear).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 6-7.
  • D. Wells, You Are A Mathematician, pp. 238-241, Penguin Books 1995.

Crossrefs

(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
For sums of cubes, cf. A000537 (partial sums), A003072, A003325, A024166, A024670, A101102 (fifth partial sums).
Cf. A001158 (inverse Möbius transform), A007412 (complement), A030078(n) (cubes of primes), A048766, A058645 (binomial transform), A065876, A101094, A101097.
Subsequence of A145784.
Cf. A260260 (comment). - Bruno Berselli, Jul 22 2015
Cf. A000292 (tetrahedral numbers), A005900 (octahedral numbers), A006566 (dodecahedral numbers), A006564 (icosahedral numbers).
Cf. A098737 (main diagonal).

Programs

  • Haskell
    a000578 = (^ 3)
    a000578_list = 0 : 1 : 8 : zipWith (+)
       (map (+ 6) a000578_list)
       (map (* 3) $ tail $ zipWith (-) (tail a000578_list) a000578_list)
    -- Reinhard Zumkeller, Sep 05 2015, May 24 2012, Oct 22 2011
    
  • Magma
    [ n^3 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
    
  • Magma
    I:=[0,1,8,27]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jul 05 2014
    
  • Maple
    A000578 := n->n^3;
    seq(A000578(n), n=0..50);
    isA000578 := proc(r)
        local p;
        if r = 0 or r =1 then
            true;
        else
            for p in ifactors(r)[2] do
                if op(2, p) mod 3 <> 0 then
                    return false;
                end if;
            end do:
            true ;
        end if;
    end proc: # R. J. Mathar, Oct 08 2013
  • Mathematica
    Table[n^3, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
    CoefficientList[Series[x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jul 05 2014 *)
    Accumulate[Table[3n^2+3n+1,{n,0,20}]] (* or *) LinearRecurrence[{4,-6,4,-1},{1,8,27,64},20](* Harvey P. Dale, Aug 18 2018 *)
  • Maxima
    A000578(n):=n^3$
    makelist(A000578(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    A000578(n)=n^3 \\ M. F. Hasler, Apr 12 2008
    
  • PARI
    is(n)=ispower(n,3) \\ Charles R Greathouse IV, Feb 20 2012
    
  • Python
    A000578_list, m = [], [6, -6, 1, 0]
    for _ in range(10**2):
        A000578_list.append(m[-1])
        for i in range(3):
            m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
    
  • Scheme
    (define (A000578 n) (* n n n)) ;; Antti Karttunen, Oct 06 2017

Formula

a(n) = Sum_{i=0..n-1} A003215(i).
Multiplicative with a(p^e) = p^(3e). - David W. Wilson, Aug 01 2001
G.f.: x*(1+4*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
Dirichlet generating function: zeta(s-3). - Franklin T. Adams-Watters, Sep 11 2005, Amarnath Murthy, Sep 09 2005
E.g.f.: (1+3*x+x^2)*x*exp(x). - Franklin T. Adams-Watters, Sep 11 2005 - Amarnath Murthy, Sep 09 2005
a(n) = Sum_{i=1..n} (Sum_{j=i..n+i-1} A002024(j,i)). - Reinhard Zumkeller, Jun 24 2007
a(n) = lcm(n, (n - 1)^2) - (n - 1)^2. E.g.: lcm(1, (1 - 1)^2) - (1 - 1)^2 = 0, lcm(2, (2 - 1)^2) - (2 - 1)^2 = 1, lcm(3, (3 - 1)^2) - (3 - 1)^2 = 8, ... - Mats Granvik, Sep 24 2007
Starting (1, 8, 27, 64, 125, ...), = binomial transform of [1, 7, 12, 6, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = A007531(n) + A000567(n). - Reinhard Zumkeller, Sep 18 2009
a(n) = binomial(n+2,3) + 4*binomial(n+1,3) + binomial(n,3). [Worpitzky's identity for cubes. See. e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n + 6*binomial(n+1,3) = binomial(n,1)+6*binomial(n+1,3). - Ron Knott, Jun 10 2019
A010057(a(n)) = 1. - Reinhard Zumkeller, Oct 22 2011
a(n) = A000537(n) - A000537(n-1), difference between 2 squares of consecutive triangular numbers. - Pierre CAMI, Feb 20 2012
a(n) = A048395(n) - 2*A006002(n). - J. M. Bergot, Nov 25 2012
a(n) = 1 + 7*(n-1) + 6*(n-1)*(n-2) + (n-1)*(n-2)*(n-3). - Antonio Alberto Olivares, Apr 03 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6. - Ant King Apr 29 2013
a(n) = A000330(n) + Sum_{i=1..n-1} A014105(i), n >= 1. - Ivan N. Ianakiev, Sep 20 2013
a(k) = det(S(4,k,(1,1,-1))) = k*b(k)^2, where b(1)=1, b(2)=2, b(k) = 2*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - Ryan Stees, Dec 14 2014
For n >= 1, a(n) = A152618(n-1) + A033996(n-1). - Bui Quang Tuan, Apr 01 2015
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Jon Tavasanis, Feb 21 2016
a(n) = n + Sum_{j=0..n-1} Sum_{k=1..2} binomial(3,k)*j^(3-k). - Patrick J. McNab, Mar 28 2016
a(n) = A000292(n-1) * 6 + n. - Zhandos Mambetaliyev, Nov 24 2016
a(n) = n*binomial(n+1, 2) + 2*binomial(n+1, 3) + binomial(n,3). - Tony Foster III, Nov 14 2017
From Amiram Eldar, Jul 02 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(3) (A002117).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/4 (A197070). (End)
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi.
Product_{n>=2} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)/(3*Pi). (End)
a(n) = Sum_{d|n} sigma_3(d)*mu(n/d) = Sum_{d|n} A001158(d)*A008683(n/d). Moebius transform of sigma_3(n). - Ridouane Oudra, Apr 15 2021

A059270 a(n) is both the sum of n+1 consecutive integers and the sum of the n immediately higher consecutive integers.

Original entry on oeis.org

0, 3, 15, 42, 90, 165, 273, 420, 612, 855, 1155, 1518, 1950, 2457, 3045, 3720, 4488, 5355, 6327, 7410, 8610, 9933, 11385, 12972, 14700, 16575, 18603, 20790, 23142, 25665, 28365, 31248, 34320, 37587, 41055, 44730, 48618, 52725, 57057, 61620
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Group the non-multiples of n as follows, e.g., for n = 4: (1,2,3), (5,6,7), (9,10,11), (13,14,15), ... Then a(n) is the sum of the members of the n-th group. Or, the sum of (n-1)successive numbers preceding n^2. - Amarnath Murthy, Jan 19 2004
Convolution of odds (A005408) and multiples of three (A008585). G.f. is the product of the g.f. of A005408 by the g.f. of A008585. - Graeme McRae, Jun 06 2006
Sums of rows of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006
Corresponds to the Wiener indices of C_{2n+1} i.e., the cycle on 2n+1 vertices (n > 0). - K.V.Iyer, Mar 16 2009
Also the product of the three numbers from A005843(n) up to A163300(n), divided by 8. - Juri-Stepan Gerasimov, Jul 26 2009
Partial sums of A033428. - Charlie Marion, Dec 08 2013
For n > 0, sum of multiples of n and (n+1) from 1 to n*(n+1). - Zak Seidov, Aug 07 2016
A generalization of Ianakiev's formula, a(n) = A005408(n)*A000217(n), follows. A005408(n+k)*A000217(n) is the sum of n+1 consecutive integers and, after skipping k integers, the sum of the n immediately higher consecutive integers. For example, for n = 3 and k = 2, 9*6 = 54 = 12+13+14+15 = 17+18+19. - Charlie Marion, Jan 25 2022

Examples

			a(5) = 25 + 26 + 27 + 28 + 29 + 30 = 31 + 32 + 33 + 34 + 35 = 165.
		

Crossrefs

Cf. A059255 for analog for sum of squares.
Cf. A222716 for the analogous sum of triangular numbers.
Cf. A234319 for nonexistence of analogs for sums of n-th powers, n > 2. - Jonathan Sondow, Apr 23 2014
Cf. A098737 (first subdiagonal).
Bisection of A109900.

Programs

  • Magma
    I:=[0, 3, 15, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 23 2012
    
  • Maple
    A059270 := proc(n) n*(n+1)*(2*n+1)/2 ; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    # (#+1)(2#+1)/2 &/@ Range[0,39] (* Ant King, Jan 03 2011 *)
    CoefficientList[Series[3 x (1 + x)/(x - 1)^4, {x, 0, 39}], x]
    LinearRecurrence[{4,-6,4,-1},{0,3,15,42},50] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n) = n*(n+1)*(2*n+1)/2 \\ Charles R Greathouse IV, Mar 08 2013
  • Sage
    [bernoulli_polynomial(n+1,3) for n in range(0, 41)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(n+1)*(2*n+1)/2.
a(n) = A000330(n)*3 = A006331(n)*3/2 = A055112(n)/2 = A000217(A002378(n)) - A000217(A005563(n-1)) = A000217(A005563(n)) - A000217(A002378(n)).
a(n) = A110449(n+1, n-1) for n > 1.
a(n) = Sum_{k=A000290(n) .. A002378(n)} k = Sum_{k=n^2..n^2+n} k.
a(n) = Sum_{k=n^2+n+1 .. n^2+2*n} k = Sum_{k=A002061(n+1) .. A005563(n)} k.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6 = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Ant King, Jan 03 2011
G.f.: 3*x*(1+x)/(1-x)^4. - Ant King, Jan 03 2011
a(n) = A000578(n+1) - A000326(n+1). - Ivan N. Ianakiev, Nov 29 2012
a(n) = A005408(n)*A000217(n) = a(n-1) + 3*A000290(n). -Ivan N. Ianakiev, Mar 08 2013
a(n) = n^3 + n^2 + A000217(n). - Charlie Marion, Dec 04 2013
From Ilya Gutkovskiy, Aug 08 2016: (Start)
E.g.f.: x*(6 + 9*x + 2*x^2)*exp(x)/2.
Sum_{n>=1} 1/a(n) = 2*(3 - 4*log(2)) = 0.4548225555204375246621... (End)
a(n) = Sum_{k=0..2*n} A001318(k). - Jacob Szlachetka, Dec 20 2021
a(n) = Sum_{k=0..n} A000326(k) + A005449(k). - Jacob Szlachetka, Dec 21 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi-3). - Amiram Eldar, Sep 17 2022

A107985 Triangle read by rows: T(n,k) = (k+1)*(n+2)*(n-k+1)/2 for 0 <= k <= n.

Original entry on oeis.org

1, 3, 3, 6, 8, 6, 10, 15, 15, 10, 15, 24, 27, 24, 15, 21, 35, 42, 42, 35, 21, 28, 48, 60, 64, 60, 48, 28, 36, 63, 81, 90, 90, 81, 63, 36, 45, 80, 105, 120, 125, 120, 105, 80, 45, 55, 99, 132, 154, 165, 165, 154, 132, 99, 55, 66, 120, 162, 192, 210, 216, 210, 192, 162, 120, 66
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
T(n,k) is the number of Dyck (n+3)-paths with 3 peaks (UDs) and last descent of length k+1. For example, T(1,1)=3 counts UUDUDUDD, UDUUDUDD, UDUDUUDD. The number of Dyck n-paths containing k peaks and with last descent of length j is (j/n)*binomial(n,k-1)*binomial(n-j-1,k-2) (where as usual binomial(a,b)=0 for b < 0 except that binomial(-1,-1):=1). - David Callan, Jun 26 2006
As a rectangular array, this is the accumulation array (cf. A144112) of the rectangular array W given by w(i,j)=i+j-1; i.e., W=A002024 as a rectangular array. - Clark Kimberling, Sep 16 2008
T(n,k) gives the dimension of an irreducible representation of SU(3) whose Young diagram (n,k) has two rows of length n and k, respectively. - Dimitris Cardaris, May 10 2025

Examples

			Triangle begins:
   1;
   3,  3;
   6,  8,  6;
  10, 15, 15, 10;
  15, 24, 27, 24, 15;
  ...
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 237, K{B(n,2,-l)}).

Crossrefs

Cf. A000217 (column 0 and main diagonal), A002024, A002415 (row sums), A098737, A144112.

Programs

  • Maple
    T:=proc(n,k) if k<=n then (k+1)*(n+2)*(n-k+1)/2 else 0 fi end: for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_,k_]:= (k+1)(n+2)(n-k+1)/2; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, Jan 06 2025 *)
  • Python
    from math import isqrt, comb
    def A107985(n):
        a = (m:=isqrt(k:=n+1<<1))+(k>m*(m+1))
        b = n-comb(a,2)
        return (b+1)*(a+1)*(a-b)>>1 # Chai Wah Wu, Jun 14 2025

Formula

T(n,n-k) = T(n,k); T(2n,n) = (n+1)^3.
G.f.: (1 - x^2*y)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Oct 01 2023

A098832 Square array read by antidiagonals: even-numbered rows of the table are of the form n*(n+m) and odd-numbered rows are of the form n*(n+m)/2.

Original entry on oeis.org

1, 3, 3, 6, 8, 2, 10, 15, 5, 5, 15, 24, 9, 12, 3, 21, 35, 14, 21, 7, 7, 28, 48, 20, 32, 12, 16, 4, 36, 63, 27, 45, 18, 27, 9, 9, 45, 80, 35, 60, 25, 40, 15, 20, 5, 55, 99, 44, 77, 33, 55, 22, 33, 11, 11, 66, 120, 54, 96, 42, 72, 30, 48, 18, 24, 6, 78, 143, 65, 117, 52, 91, 39, 65, 26, 39, 13, 13
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 02 2004

Keywords

Comments

The rows of this table and that in A098737 are related. Given a function f = n/( 1 + (1+n) mod(2) ), row n of A098737 can be derived from row n of T by multiplying the latter by f(n); row n of T can be derived from row n of A098737 by dividing the latter by f(n).

Examples

			Array begins as:
  1,  3,  6, 10, 15, 21,  28,  36,  45 ... A000217;
  3,  8, 15, 24, 35, 48,  63,  80,  99 ... A005563;
  2,  5,  9, 14, 20, 27,  35,  44,  54 ... A000096;
  5, 12, 21, 32, 45, 60,  77,  96, 117 ... A028347;
  3,  7, 12, 18, 25, 33,  42,  52,  63 ... A027379;
  7, 16, 27, 40, 55, 72,  91, 112, 135 ... A028560;
  4,  9, 15, 22, 30, 39,  49,  60,  72 ... A055999;
  9, 20, 33, 48, 65, 84, 105, 128, 153 ... A028566;
  5, 11, 18, 26, 35, 45,  56,  68,  81 ... A056000;
Antidiagonals begin as:
   1;
   3,  3;
   6,  8,  2;
  10, 15,  5,  5;
  15, 24,  9, 12,  3;
  21, 35, 14, 21,  7,  7;
  28, 48, 20, 32, 12, 16,  4;
  36, 63, 27, 45, 18, 27,  9,  9;
  45, 80, 35, 60, 25, 40, 15, 20,  5;
  55, 99, 44, 77, 33, 55, 22, 33, 11, 11;
		

Crossrefs

Row m of array: A000217 (m=1), A005563 (m=2), A000096 (m=3), A028347 (m=4), A027379 (m=5), A028560 (m=6), A055999 (m=7), A028566 (m=8), A056000 (m=9), A098603 (m=10), A056115 (m=11), A098847 (m=12), A056119 (m=13), A098848 (m=14), A056121 (m=15), A098849 (m=16), A056126 (m=17), A098850 (m=18), A051942 (m=19).
Column m of array: A026741 (m=1), A022998 (m=2), A165351 (m=3).

Programs

  • Magma
    A098832:= func< n,k | (1/4)*(3+(-1)^k)*(n+1)*(n-k+1) >;
    [A098832(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 31 2022
    
  • Mathematica
    A098832[n_, k_]:= (1/4)*(3+(-1)^k)*(n+1)*(n-k+1);
    Table[A098832[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 31 2022 *)
  • SageMath
    def A098832(n,k): return (1/4)*(3+(-1)^k)*(n+1)*(n-k+1)
    flatten([[A098832(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Jul 31 2022

Formula

Item m of row n of T is given (in infix form) by: n T m = n * (n + m) / (1 + m (mod 2)). E.g. Item 4 of row 3 of T: 3 T 4 = 14.
From G. C. Greubel, Jul 31 2022: (Start)
A(n, k) = (1/4)*(3 + (-1)^n)*k*(k+n) (array).
T(n, k) = (1/4)*(3 + (-1)^k)*(n+1)*(n-k+1) (antidiagonal triangle).
Sum_{k=1..n} T(n, k) = (1/8)*(n+1)*( (3*n-1)*(n+1) + (1+(-1)^n)/2 ).
T(2*n-1, n) = A181900(n).
T(2*n+1, n) = 2*A168509(n+1). (End)

Extensions

Missing terms added by G. C. Greubel, Jul 31 2022

A212331 a(n) = 5*n*(n+5)/2.

Original entry on oeis.org

0, 15, 35, 60, 90, 125, 165, 210, 260, 315, 375, 440, 510, 585, 665, 750, 840, 935, 1035, 1140, 1250, 1365, 1485, 1610, 1740, 1875, 2015, 2160, 2310, 2465, 2625, 2790, 2960, 3135, 3315, 3500, 3690, 3885, 4085, 4290, 4500, 4715, 4935, 5160, 5390, 5625, 5865
Offset: 0

Views

Author

Bruno Berselli, May 30 2012

Keywords

Comments

Numbers of the form n*t(n+5,h)-(n+5)*t(n,h), where t(k,h) = k*(k+2*h+1)/2 for any h. Likewise:
A000217(n) = n*t(n+1,h)-(n+1)*t(n,h),
A005563(n) = n*t(n+2,h)-(n+2)*t(n,h),
A140091(n) = n*t(n+3,h)-(n+3)*t(n,h),
A067728(n) = n*t(n+4,h)-(n+4)*t(n,h) (n>0),
A140681(n) = n*t(n+6,h)-(n+6)*t(n,h).
This is the case r=7 in the formula:
u(r,n) = (P(r, P(n+r, r+6)) - P(n+r, P(r, r+6))) / ((r+5)*(r+6)/2)^2, where P(s, m) is the m-th s-gonal number.
Also, a(k) is a square for k = (5/2)*(A078986(n)-1).
Sum of reciprocals of a(n), for n>0: 137/750.
Also, numbers h such that 8*h/5+25 is a square.
The table given below as example gives the dimensions D(h, n) of the irreducible SU(3) multiplets (h,n). See the triangle A098737 with offset 0, and the comments there, also with a link and the Coleman reference. - Wolfdieter Lang, Dec 18 2020

Examples

			From the first and second comment derives the following table:
----------------------------------------------------------------
h \ n | 0   1    2    3    4    5    6    7    8    9    10
------|---------------------------------------------------------
0     | 0,  1,   3,   6,  10,  15,  21,  28,  36,  45,   55, ...  (A000217)
1     | 0,  3,   8,  15,  24,  35,  48,  63,  80,  99,  120, ...  (A005563)
2     | 0,  6,  15,  27,  42,  60,  81, 105, 132, 162,  195, ...  (A140091)
3     | 0, 10,  24,  42,  64,  90, 120, 154, 192, 234,  280, ...  (A067728)
4     | 0, 15,  35,  60,  90, 125, 165, 210, 260, 315,  375, ...  (A212331)
5     | 0, 21,  48,  81, 120, 165, 216, 273, 336, 405,  480, ...  (A140681)
6     | 0, 28,  63, 105, 154, 210, 273, 343, 420, 504,  595, ...
7     | 0, 36,  80, 132, 192, 260, 336, 420, 512, 612,  720, ...
8     | 0, 45,  99, 162, 234, 315, 405, 504, 612, 729,  855, ...
9     | 0, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, ...
with the formula n*(h+1)*(h+n+1)/2. See also A098737.
		

Crossrefs

Programs

  • Magma
    [5*n*(n+5)/2: n in [0..46]];
    
  • Mathematica
    Table[(5/2) n (n + 5), {n, 0, 46}]
  • PARI
    a(n)=5*n*(n+5)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: 5*x*(3-2*x)/(1-x)^3.
a(n) = a(-n-5) = 5*A055998(n).
E.g.f.: (5/2)*x*(x + 6)*exp(x). - G. C. Greubel, Jul 21 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/25 - 47/750. - Amiram Eldar, Feb 26 2022

Extensions

Extended by Bruno Berselli, Aug 05 2015

A331433 Column 1 of triangle in A331431.

Original entry on oeis.org

6, -24, 60, -120, 210, -336, 504, -720, 990, -1320, 1716, -2184, 2730, -3360, 4080, -4896, 5814, -6840, 7980, -9240, 10626, -12144, 13800, -15600, 17550, -19656, 21924, -24360, 26970, -29760, 32736, -35904, 39270, -42840, 46620, -50616, 54834, -59280, 63960, -68880, 74046
Offset: 0

Views

Author

N. J. A. Sloane, Jan 17 2020

Keywords

Comments

Apart from the signs, essentially the same as A007531. - Georg Fischer, Jan 18 2020

Crossrefs

Cf. A098737 (unsigned, 2nd subdiagonal).

Programs

  • Magma
    [6*(-1)^n*Binomial(n+3,3): n in [0..50]]; // G. C. Greubel, Mar 22 2022
    
  • Mathematica
    CoefficientList[Series[6/(1+x)^4, {x, 0, 40}], x] (* Georg Fischer, Jan 18 2020 *)
  • Sage
    [6*(-1)^n*binomial(n+3,3) for n in (0..50)] # G. C. Greubel, Mar 22 2022

Formula

G.f.: 6/(1+x)^4. - Georg Fischer, Jan 18 2020
a(n) = 6*(-1)^n*A000292(n+1). - R. J. Mathar, Jan 21 2020
E.g.f.: (6 - 18*x + 9*x^2 - x^3)*exp(-x). - G. C. Greubel, Mar 22 2022

Extensions

a(4) changed to 210, and more terms from Georg Fischer, Jan 18 2020
Showing 1-6 of 6 results.