cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A098603 a(n) = n*(n+10).

Original entry on oeis.org

0, 11, 24, 39, 56, 75, 96, 119, 144, 171, 200, 231, 264, 299, 336, 375, 416, 459, 504, 551, 600, 651, 704, 759, 816, 875, 936, 999, 1064, 1131, 1200, 1271, 1344, 1419, 1496, 1575, 1656, 1739, 1824, 1911, 2000, 2091, 2184, 2279, 2376, 2475, 2576, 2679, 2784
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

Keywords

Comments

These are the only positive integer values of t for which the Binet-de Moivre formula for the recurrence b(n) = 10*b(n-1)+t*b(n-2) with b(0)=0 and b(1)=1 has a root which is a square. In particular, sqrt(10^2+4*t) is a positive integer since 10^2+4*t = 10^2+4*a(m) = (2*m+10)^2. Thus the characteristic roots are r1=10+m and r2 = -m. - Felix P. Muga II, Mar 28 2014

Crossrefs

Cf. A098832.
a(n-5), n>=6, fifth column (used for the Pfund series of the hydrogen atom) of triangle A120070.

Programs

Formula

a(n) = (n+5)^2 - 5^2 = n*(n+10), n>=0.
G.f.: x*(11-9*x)/(1-x)^3.
a(n) = a(n-1) + 2*n + 9, (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
Sum_{n>=1} 1/a(n) = 7381/25200 via sum_{n>=0} 1/((n+x)*(n+y)) = (psi(x)-psi(y))/(x-y). - R. J. Mathar, Jul 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=11, a(2)=24. - Harvey P. Dale, Jul 26 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 1627/25200. - Amiram Eldar, Jan 15 2021
E.g.f.: x*(11 + x)*exp(x). - G. C. Greubel, Jul 31 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -18144*sqrt(2/13)*sin(sqrt(26)*Pi)/(935*Pi).
Product_{n>=1} (1 + 1/a(n)) = 126*sqrt(6)*sin(2*sqrt(6)*Pi)/(23*Pi). (End)

Extensions

More terms from Emeric Deutsch, Mar 11 2005

A098849 a(n) = n*(n + 16).

Original entry on oeis.org

0, 17, 36, 57, 80, 105, 132, 161, 192, 225, 260, 297, 336, 377, 420, 465, 512, 561, 612, 665, 720, 777, 836, 897, 960, 1025, 1092, 1161, 1232, 1305, 1380, 1457, 1536, 1617, 1700, 1785, 1872, 1961, 2052, 2145, 2240, 2337, 2436, 2537, 2640, 2745, 2852, 2961
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

Keywords

Crossrefs

a(n-8), n>=9, eighth column (used for the n=8 series of the hydrogen atom) of triangle A120070.

Programs

Formula

a(n) = (n+8)^2 - 8^2 = n*(n + 16), n>=0.
G.f.: x*(17 - 15*x)/(1-x)^3.
a(n) = a(n-1) + 2*n + 15 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(17 + x)*exp(x). (End)
From Amiram Eldar, Jan 15 2021: (Start)
Sum_{n>=1} 1/a(n) = H(16)/16 = A001008(16)/A102928(16) = 2436559/11531520, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 95549/2306304. (End)

Extensions

More terms from Emeric Deutsch, Mar 26 2005

A098847 a(n) = n*(n + 12).

Original entry on oeis.org

0, 13, 28, 45, 64, 85, 108, 133, 160, 189, 220, 253, 288, 325, 364, 405, 448, 493, 540, 589, 640, 693, 748, 805, 864, 925, 988, 1053, 1120, 1189, 1260, 1333, 1408, 1485, 1564, 1645, 1728, 1813, 1900, 1989, 2080, 2173, 2268, 2365, 2464, 2565, 2668, 2773
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

Keywords

Crossrefs

a(n-6), n>=7, sixth column (used for the n=6 series of the hydrogen atom) of triangle A120070.

Programs

Formula

a(n) = (n+6)^2 - 6^2 = n*(n + 12), n>=0.
G.f.: x*(13 - 11*x)/(1-x)^3.
a(n) = 2*n + a(n-1) + 11 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
a(0)=0, a(1)=13, a(2)=28, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 24 2012
Sum_{n>=1} 1/a(n) = 86021/332640 = 0.258600... via Sum_{n>=0} 1/((n+x)(n+y)) = (psi(x)-psi(y))/(x-y). - R. J. Mathar, Jul 14 2012
E.g.f.: x*(13 + x)*exp(x). - G. C. Greubel, Jul 29 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 18107/332640. - Amiram Eldar, Jan 15 2021

Extensions

More terms from Robert G. Wilson v, Jul 14 2005

A098848 a(n) = n*(n + 14).

Original entry on oeis.org

0, 15, 32, 51, 72, 95, 120, 147, 176, 207, 240, 275, 312, 351, 392, 435, 480, 527, 576, 627, 680, 735, 792, 851, 912, 975, 1040, 1107, 1176, 1247, 1320, 1395, 1472, 1551, 1632, 1715, 1800, 1887, 1976, 2067, 2160, 2255, 2352, 2451, 2552, 2655, 2760, 2867
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

Keywords

Crossrefs

Cf. A098832.
a(n-7), n>=8, seventh column (used for the n=7 series of the hydrogen atom) of triangle A120070.

Programs

Formula

a(n) = (n+7)^2 - 7^2 = n*(n + 14), n>=0.
G.f.: x*(15 - 13*x)/(1-x)^3.
a(n) = 2*n + a(n-1) + 13 (with a(0)=0). - Vincenzo Librandi, Nov 16 2010
Sum_{n>=1} 1/a(n) = 1171733/5045040 = 0.2322544518... via Sum_{n>=0} 1/((n+x)(n+y)) = (psi(x)-psi(y))/(x-y). - R. J. Mathar, Jul 14 2012
From G. C. Greubel, Jul 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(15 + x)*exp(x). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 237371/5045040. - Amiram Eldar, Jan 15 2021

Extensions

More terms from Robert G. Wilson v, Jul 14 2005

A098850 a(n) = n*(n + 18).

Original entry on oeis.org

0, 19, 40, 63, 88, 115, 144, 175, 208, 243, 280, 319, 360, 403, 448, 495, 544, 595, 648, 703, 760, 819, 880, 943, 1008, 1075, 1144, 1215, 1288, 1363, 1440, 1519, 1600, 1683, 1768, 1855, 1944, 2035, 2128, 2223, 2320, 2419, 2520, 2623, 2728, 2835, 2944, 3055
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

Keywords

Crossrefs

a(n-9), n>=10, ninth column (used for the n=9 series of the hydrogen atom) of triangle A120070.

Programs

Formula

a(n) = (n+9)^2 - 9^2 = n*(n + 18), n>=0.
G.f.: x*(19 - 17*x)/(1-x)^3.
a(n) = 2*n + a(n-1) + 17 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(19 + x)*exp(x). (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(18)/18 = A001008(18)/A102928(18) = 14274301/73513440, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1632341/44108064. (End)

Extensions

More terms from Emeric Deutsch, Mar 06 2005

A165351 Numerator of 3*n/2.

Original entry on oeis.org

0, 3, 3, 9, 6, 15, 9, 21, 12, 27, 15, 33, 18, 39, 21, 45, 24, 51, 27, 57, 30, 63, 33, 69, 36, 75, 39, 81, 42, 87, 45, 93, 48, 99, 51, 105, 54, 111, 57, 117, 60, 123, 63, 129, 66, 135, 69, 141, 72, 147, 75, 153, 78, 159, 81, 165, 84, 171, 87, 177, 90, 183, 93, 189, 96, 195
Offset: 0

Views

Author

Paul Curtz, Sep 16 2009

Keywords

Comments

First trisection of A026741. The other trisections are A165355 and A165367.

Crossrefs

Cf. A000034 (denominator).

Programs

Formula

a(n) = A026741(3*n) = 3*A026741(n).
a(2n) = A008585(n).
a(2n+1) = A016945(n).
G.f.: 3*x*(1+x+x^2)/((1-x)^2 * (1+x)^2).
a(n) = numerator(3n/2). - Wesley Ivan Hurt, Oct 11 2013
a(n) = 3*n / (1 + ((n+1) mod 2)). - Wesley Ivan Hurt, Feb 25 2014
From G. C. Greubel, Jul 31 2022: (Start)
a(n) = 3*n*(3 - (-1)^n)/4.
E.g.f.: (3*x/2)*( 2*cosh(x) + sinh(x) ). (End)

Extensions

Edited and extended by R. J. Mathar, Sep 26 2009
New name from Wesley Ivan Hurt, Oct 13 2013
Showing 1-6 of 6 results.