cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A006011 a(n) = n^2*(n^2 - 1)/4.

Original entry on oeis.org

0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0

Views

Author

Keywords

Comments

Products of two consecutive triangular numbers (A000217).
a(n) is the number of Lyndon words of length 4 on an n-letter alphabet. A Lyndon word is a primitive word that is lexicographically earliest in its cyclic rotation class. For example, a(2)=3 counts 1112, 1122, 1222. - David Callan, Nov 29 2007
For n >= 2 this is the second rightmost column of A163932. - Johannes W. Meijer, Oct 16 2009
Partial sums of A059270. - J. M. Bergot, Jun 27 2013
Using the integers, triangular numbers, and squares plot the points (A001477(n),A001477(n+1)), (A000217(n), A000217(n+1)), and (A000290(n),A000290(n+1)) to create the vertices of a triangle. One-half the area of this triangle = a(n). - J. M. Bergot, Aug 01 2013
a(n) is the Wiener index of the triangular graph T(n+1). - Emeric Deutsch, Aug 26 2013

Examples

			From _Bruno Berselli_, Aug 29 2014: (Start)
After the zeros, the sequence is provided by the row sums of the triangle:
   3;
   4, 14;
   5, 16, 39;
   6, 18, 42,  84;
   7, 20, 45,  88, 155;
   8, 22, 48,  92, 160, 258;
   9, 24, 51,  96, 165, 264, 399;
  10, 26, 54, 100, 170, 270, 406, 584;
  11, 28, 57, 104, 175, 276, 413, 592, 819;
  12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
    
  • Maple
    A006011 := proc(n)
        n^2*(n^2-1)/4 ;
    end proc: # R. J. Mathar, Nov 29 2015
  • Mathematica
    Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
    Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
    Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013

Formula

G.f.: 3*(1 + x) / (1 - x)^5.
a(n) = (n-1)*n/2 * n*(n+1)/2 = A000217(n-1)*A000217(n) = 1/2*(n^2-1)*n^2/2 = 1/2*A000217(n^2-1). - Alexander Adamchuk, Apr 13 2006
a(n) = 3*A002415(n) = A047928(n-1)/4 = A083374(n-1)/2 = A008911(n)*3/2. - Zerinvary Lajos, May 09 2007
a(n) = (A126274(n) - A000537(n+1))/2. - Enrique Pérez Herrero, Mar 11 2013
Ceiling(sqrt(a(n)) + sqrt(a(n-1)))/2 = A000217(n). - Richard R. Forberg, Aug 14 2013
a(n) = Sum_{i=1..n-1} i*(i^2+n) for n > 1 (see Example section). - Bruno Berselli, Aug 29 2014
Sum_{n>=2} 1/a(n) = 7 - 2*Pi^2/3 = 0.42026373260709425411... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n^2+n) - A000217(n)*A000217(n+1). - Charlie Marion, Feb 15 2020
Sum_{n>=2} (-1)^n/a(n) = Pi^2/3 - 3. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/4. - Stefano Spezia, Mar 12 2024

A126890 Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 30 2006

Keywords

Comments

T(n,k) + T(n,n-k) = A014105(n);
row sums give A059270; Sum_{k=0..n-1} T(n,k) = A000578(n);
central terms give A007742; T(2*n+1,n) = A016754(n);
T(n,0) = A000217(n);
T(n,1) = A000096(n) for n > 0;
T(n,2) = A055998(n) for n > 1;
T(n,3) = A055999(n) for n > 2;
T(n,4) = A056000(n) for n > 3;
T(n,5) = A056115(n) for n > 4;
T(n,6) = A056119(n) for n > 5;
T(n,7) = A056121(n) for n > 6;
T(n,8) = A056126(n) for n > 7;
T(n,10) = A101859(n-1) for n > 9;
T(n,n-3) = A095794(n-1) for n > 2;
T(n,n-2) = A045943(n-1) for n > 1;
T(n,n-1) = A000326(n) for n > 0;
T(n,n) = A005449(n).

Examples

			From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
   0;
   1,  2;
   3,  5,  7;
   6,  9, 12, 15;
  10, 14, 18, 22, 26;
  15, 20, 25, 30, 35, 40;
  21, 27, 33, 39, 45, 51, 57;
  28, 35, 42, 49, 56, 63, 70, 77; (End)
		

References

  • Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.

Crossrefs

Cf. A110449.

Programs

  • Haskell
    a126890 n k = a126890_tabl !! n !! k
    a126890_row n = a126890_tabl !! n
    a126890_tabl = map fst $ iterate
       (\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0)
    -- Reinhard Zumkeller, Nov 10 2013
  • Mathematica
    Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)

Formula

T(n,k) = T(n,k-1) + n, for k <= n. - Philippe Deléham, Oct 03 2011

A110449 Triangle read by rows: T(n,k) = n*((2*k+1)*n+1)/2, 0<=k<=n.

Original entry on oeis.org

0, 1, 2, 3, 7, 11, 6, 15, 24, 33, 10, 26, 42, 58, 74, 15, 40, 65, 90, 115, 140, 21, 57, 93, 129, 165, 201, 237, 28, 77, 126, 175, 224, 273, 322, 371, 36, 100, 164, 228, 292, 356, 420, 484, 548, 45, 126, 207, 288, 369, 450, 531, 612, 693, 774, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 1055
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 21 2005

Keywords

Comments

Row sums give A110450; central terms give A110451;
T(n,0) = A000217(n);
T(n,1) = A005449(n) for n>0;
T(n,2) = A005475(n) for n>1;
T(n,3) = A022265(n) for n>2;
T(n,4) = A022267(n) for n>3;
T(n,5) = A022269(n) for n>4;
T(n,6) = A022271(n) for n>5;
T(n,7) = A022263(n) for n>6;
T(n+1,n-1) = A059270(n) for n>1;
T(n,n-1) = A081436(n) for n>1;
T(n,n) = A085786(n).

Examples

			Triangle starts:
0;
1, 2;
3, 7, 11;
6, 15, 24, 33;
10, 26, 42, 58, 74;
...
		

Crossrefs

Cf. A126890.

Programs

  • Mathematica
    Table[n*((2*k + 1)*n + 1)/2, {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(n*((2*k+1)*n+1)/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015

Formula

T(n,k) = n*((2*k + 1)*n + 1)/2, 0 <= k <= n.

A059255 Both sum of n+1 consecutive squares and sum of the immediately following n consecutive squares.

Original entry on oeis.org

0, 25, 365, 2030, 7230, 19855, 45955, 94220, 176460, 308085, 508585, 802010, 1217450, 1789515, 2558815, 3572440, 4884440, 6556305, 8657445, 11265670, 14467670, 18359495, 23047035, 28646500, 35284900, 43100525, 52243425, 62875890, 75172930, 89322755, 105527255, 124002480
Offset: 0

Views

Author

Henry Bottomley, Jan 23 2001

Keywords

Comments

The analog for sums of integers is A059270, and the analog for sums of triangular numbers is A222716. - Jonathan Sondow, Mar 07 2013
In 1879, Dostor gave formulas for all solutions -- see the Dickson link. - Jonathan Sondow, Jun 21 2014

Examples

			a(3) = 2030 = 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 68 at p. 152.

Crossrefs

The n+1 consecutive squares start with the square of A014105, while the n consecutive squares start with the square of A001844.
Cf. also A059270, A222716.
Cf. A234319 for nonexistence of analogs for sums of n-th powers, n > 2. - Jonathan Sondow, Apr 23 2014

Programs

  • Magma
    [n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 : n in [0..50]]; // Wesley Ivan Hurt, Jun 21 2014
    
  • Maple
    A059255:=n->n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6; seq(A059255(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014
  • Mathematica
    Table[1/6(-1+n)(-n+14n^2-36n^3+24n^4),{n,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,25,365,2030,7230,19855},40] (* Harvey P. Dale, May 09 2011 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 \\ Charles R Greathouse IV, Jul 27 2021

Formula

a(n) = n*(n + 1)*(2n + 1)*(12n^2 + 12n + 1)/6.
a(n) = 4*n^5 + 10*n^4 + (25/3)*n^3 + (5/2)*n^2 + (1/6)*n. [Corrected by Ignacio Larrosa Cañestro, Nov 15 2021]
a(n) = A000330(A046092(n)) - A000330(A014107(n + 1)).
a(n) = A000330(A014106(n)) - A000330(A046092(n)).
From Harvey P. Dale, May 09 2011: (Start)
G.f.: (5x(1+x)(5+x(38+5x)))/(x-1)^6.
a(0)=0, a(1)=25, a(2)=365, a(3)=2030, a(4)=7230, a(5)=19855, a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+6a(n-5)-a(n-6). (End)
a(n) = (4*T(n)-n)^2+(4*T(n)-n+1)^2+...+(4*T(n))^2 = (4*T(n)+1)^2+(4*T(n)+2)^2+...+(4*T(n)+n)^2, where T = A000217. See Boardman (2000). - Jonathan Sondow, Mar 07 2013
a(0)=0, a(n) = 25 + 340*C(n-1,1) + 1325*C(n-1,2) + 2210*C(n-1,3) + 1680*C(n-1,4) + 480*C(n-1,5) for n >= 1, where C(a,b) are binomial coefficients. - Kieren MacMillan, Sep 16 2014
E.g.f.: exp(x)*x*(150 + 945*x + 1010*x^2 + 300*x^3 + 24*x^4)/6. - Stefano Spezia, Aug 05 2024

A063657 Numbers with property that truncated square root is unequal to rounded square root.

Original entry on oeis.org

3, 7, 8, 13, 14, 15, 21, 22, 23, 24, 31, 32, 33, 34, 35, 43, 44, 45, 46, 47, 48, 57, 58, 59, 60, 61, 62, 63, 73, 74, 75, 76, 77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 133, 134, 135, 136, 137, 138, 139, 140
Offset: 1

Views

Author

Floor van Lamoen, Jul 24 2001

Keywords

Comments

Also: skip 1, take 0, skip 2, take 1, skip 3, take 2, ...
Integers for which the periodic part of the continued fraction for the square root of n begins with a 1. - Robert G. Wilson v, Nov 01 2001
a(n) belongs to the sequence if and only if a(n) > floor(sqrt(a(n))) * ceiling(sqrt(a(n))), i.e. a(n) in (k*(k+1),k^2), k >= 0. - Daniel Forgues, Apr 17 2011
Any integer between (k - 1/2)^2 and k^2 exclusive, for k > 1, is in this sequence. If we take this sequence and remove each term that is one more than the previous term, we obtain the central polygonal numbers (A002061). If instead we remove each term that is one less than the next term, we obtain numbers that are one less than squares (A005563). - Alonso del Arte, Dec 28 2013

Examples

			7 is in the sequence because its square root is 2.64575..., which truncates to 2 but rounds to 3.
8 is in the sequence because its square root is 2.828427..., which also truncates to 2 but rounds to 3.
9 is not in the sequence because its square root is 3 exactly, which truncates and rounds the same.
Here is the example per Lamoen's skip n, take n - 1 process: starting at 0, we skip one integer (0) but take zero integers for our sequence. Then we skip two integers (1 and 2) and take one integer (3) for our sequence. Then we skip three integers (4, 5, 6) and take two integers for our sequence (7 and 8, so the sequence now stands as 3, 7, 8). Then we skip four integers (9, 10, 11, 12) and so on and so forth.
From _Seiichi Manyama_, Sep 19 2017: (Start)
See R. B. Nelsen's paper.
   k|            A063656(n)         |            a(n)
   -------------------------------------------------------------------
   0|                             0
   1|                        1 +  2 =  3
   2|                   4 +  5 +  6 =  7 +  8
   3|              9 + 10 + 11 + 12 = 13 + 14 + 15
   4|        16 + 17 + 18 + 19 + 20 = 21 + 22 + 23 + 24
    | ...
(End)
The triangle begins as:
   3;
   7,  8;
  13, 14, 15;
  21, 22, 23, 24;
  31, 32, 33, 34, 35;
  43, 44, 45, 46, 47, 48;
  57, 58, 59, 60, 61, 62, 63;
  73, 74, 75, 76, 77, 78, 79, 80;
  91, 92, 93, 94, 95, 96, 97, 98, 99;
  ... - _Stefano Spezia_, Oct 20 2024
		

Crossrefs

Cf. A005563 (main diagonal), A059270 (row sums), A217575.

Programs

  • Haskell
    a063657 n = a063657_list !! n
    a063657_list = f 0 [0..] where
       f k (_:xs) = us ++ f (k + 1) (drop (k + 1) vs) where
                            (us, vs) = splitAt k xs
    -- Reinhard Zumkeller, Jun 20 2015
  • Maple
    A063657:=n->`if`(floor(floor(sqrt(n+1)) * (1+floor(sqrt(n+1)))/(n+1))=1, NULL, n+1); seq(A063657(n), n=1..200); # Wesley Ivan Hurt, Dec 28 2013
  • Mathematica
    Select[ Range[200], Floor[ Sqrt[ # ]] != Floor[ Sqrt[ # ] + 1/2] & ] (* or *) Select[ Range[200], First[ Last[ ContinuedFraction[ Sqrt[ # ]]]] == 1 & ]
  • PARI
    { n=0; for (m=0, 10^9, if (sqrt(m)%1 > .5, write("b063657.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 27 2009
    

Formula

a(n) = A217575(n) + 1. - Reinhard Zumkeller, Jun 20 2015
From Stefano Spezia, Oct 20 2024: (Start)
As a triangle:
T(n,k) = n^2 + n + k with 1 <= k <= n.
G.f.: x*y*(3 + x^2*(1 - 4*y) - x*(2 + y) + x^3*y*(1 + 2*y))/((1 - x)^3*(1 - x*y)^3). (End)

A065177 Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 15, 12, 4, 1, 0, 9, 42, 42, 20, 5, 1, 0, 18, 107, 156, 90, 30, 6, 1, 0, 30, 294, 554, 420, 165, 42, 7, 1, 0, 56, 780, 2028, 1910, 930, 273, 56, 8, 1, 0, 99, 2128, 7350, 8820, 5155, 1806, 420, 72, 9, 1, 0, 186, 5781, 26936
Offset: 0

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Examples

			Upper left corner starts as:
  1, 0,  0,   0,    0,     0,     0, ...
  1, 1,  2,   3,    6,     9,    18, ...
  1, 2,  6,  15,   42,   107,   294, ...
  1, 3, 12,  42,  156,   554,  2028, ...
  1, 4, 20,  90,  420,  1910,  8820, ...
  1, 5, 30, 165,  930,  5155, 28830, ...
  1, 6, 42, 273, 1806, 11809, 77658, ...
  ...
		

Crossrefs

Row 1: A059966, row 2: A065178, row 3: A065179, row 4: A065180.
Column 1: A002378, column 2: A059270.
Main diagonal gives A306173.
Cf. also A065167. trinv given at A054425.

Programs

  • Maple
    [seq(DistSS_table(j),j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));
    with(numtheory); DistSS := proc(n,b) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
    DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;
    a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];
    Table[a[n], {n, 0, 119}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)

Formula

Row n is the inverse Euler transform of j-> n^(j-1). - Alois P. Heinz, Jun 23 2018

A222716 Numbers which are both the sum of n+1 consecutive triangular numbers and the sum of the n-1 immediately following triangular numbers.

Original entry on oeis.org

0, 10, 100, 460, 1460, 3710, 8120, 15960, 28920, 49170, 79420, 122980, 183820, 266630, 376880, 520880, 705840, 939930, 1232340, 1593340, 2034340, 2567950, 3208040, 3969800, 4869800, 5926050, 7158060, 8586900, 10235260, 12127510, 14289760, 16749920, 19537760, 22684970, 26225220, 30194220, 34629780, 39571870, 45062680, 51146680
Offset: 1

Views

Author

Jonathan Sondow, Mar 02 2013

Keywords

Comments

The n+1 consecutive triangular numbers start with the A028387(n-2)-th triangular number A000217(n^2-n-1), while the n-1 consecutive triangular numbers start with the A000290(n)-th triangular number A000217(n^2).
Similar sums of consecutive integers are A059270.
Similar sums of consecutive squares are A059255.
Berselli points out that a(n) = 10*A024166(n-1) = A000292(n-1)*(3*n^2 - 2). Since a(n) is a sum of triangular numbers, 10=1+2+3+4 is the 4th triangular number, A024166 is a sum of cubes, and A000292 is a tetrahedral number, is there a geometric proof of Berselli's formula? (Compare Nelsen and Unal's "Proof Without Words: Runs of Triangular Numbers.") [Jonathan Sondow, Mar 04 2013]

Examples

			T(1) + T(2) + T(3) = 1 + 3 + 6 = 10 = T(4) and 4 = 2^2, so a(2) = 10.
T(5) + T(6) + T(7) + T(8) = 15 + 21 + 28 + 36 = 100 = 45 + 55 = T(9) + T(10) and 9 = 3^2, so a(3) = 100.
		

Crossrefs

Programs

  • Mathematica
    Table[ n/6 (2 - 5 n^2 + 3 n^4), {n, 1, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,10,100,460,1460,3710},40] (* Harvey P. Dale, Apr 19 2016 *)

Formula

a(n) = T(n^2-n-1)+T(n^2-n)+...+T(n^2-1) = T(n^2)+T(n^2+1)+...+T(n^2+n-2), where T = A000217.
a(n) = (3*n^5 - 5*n^3 + 2*n)/6 = (n-1)*n*(n+1)*(3*n^2 - 2)/6.
G.f.: 10*x^2*(1+4*x+x^2)/(1-x)^6. [Bruno Berselli, Mar 04 2013]
a(n) = -a(-n) = 10*A024166(n-1) = A000292(n-1)*A100536(n). [Bruno Berselli, Mar 04 2013]
a(n) = TP(n^2-1)-TP(n^2-n-2) = TP(n^2+n-2)-TP(n^2-1) = TP(n-1)*(3*n^2-2), where TP = A000292. [Jonathan Sondow, Mar 04 2013]

A241016 Triangle read by rows: T(n, k) = sum of k-th row of n X n square filled with the numbers 1 through n^2 reading across rows left-to-right.

Original entry on oeis.org

1, 3, 7, 6, 15, 24, 10, 26, 42, 58, 15, 40, 65, 90, 115, 21, 57, 93, 129, 165, 201, 28, 77, 126, 175, 224, 273, 322, 36, 100, 164, 228, 292, 356, 420, 484, 45, 126, 207, 288, 369, 450, 531, 612, 693, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 66, 187, 308, 429, 550
Offset: 1

Views

Author

Kival Ngaokrajang, Aug 08 2014

Keywords

Comments

See illustration in links.
The corresponding triangle with column sums is found in A251630. - Wolfdieter Lang, Dec 09 2014

Examples

			The triangle T(n, k) begins:
n\k  1   2   3   4   5   6   7   8   9  10 ...
1:   1
2:   3   7
3:   6  15  24
4:  10  26  42  58
5:  15  40  65  90 115
6:  21  57  93 129 165 201
7:  28  77 126 175 224 273 322
8:  36 100 164 228 292 356 420 484
9:  45 126 207 288 369 450 531 612 693
10: 55 155 255 355 455 555 655 755 855 955
... reformatted - _Wolfdieter Lang_, Dec 08 2014
		

Crossrefs

Diagonals: A081436, A059270, ...
Row sums: A037270.

Programs

  • Mathematica
    Table[Sum[n*(k - 1) + j, {j,1,n}], {n,1,10}, {k,1,n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
  • PARI
    trg(nn) = {for (n=1, nn, mm = matrix(n, n, i, j, j + n*(i-1)); for (i=1, n, print1(sum(j=1, n, mm[i, j]), ", ");); print(););} \\ Michel Marcus, Sep 15 2014

Formula

T(n, k) = Sum_{j=1..n} (n*(k-1)+ j), for n >= k >= 1. See the Michel Marcus program. - Wolfdieter Lang, Dec 08 2014
T(n, k) = binomial(n+1, 2) + n^2*(k-1). - Wolfdieter Lang, Dec 09 2014

Extensions

Edited. - Wolfdieter Lang, Dec 08 2014

A069074 a(n) = (2*n+2)*(2*n+3)*(2*n+4) = 24*A000330(n+1).

Original entry on oeis.org

24, 120, 336, 720, 1320, 2184, 3360, 4896, 6840, 9240, 12144, 15600, 19656, 24360, 29760, 35904, 42840, 50616, 59280, 68880, 79464, 91080, 103776, 117600, 132600, 148824, 166320, 185136, 205320, 226920, 249984, 274560, 300696, 328440, 357840
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

sqrt((Sum_{k=0..n} 2*a(k)) + 1) = A056220(n+2). - Doug Bell, Mar 09 2009
Second leg of Pythagorean triangles with hypotenuse a square: A057769(n)^2 + a(n-1)^2 = A007204(n)^2. - Martin Renner, Nov 12 2011
Numbers which are both the sum of 2*n + 4 consecutive odd integers and the sum of the 2*n + 2 immediately higher consecutive odd integers. In general, let f(k,n) = 3*k^3*A000330(n). Then f(k,n) is both the sum of k*n + k consecutive terms from the arithmetic progression with first term A000217(k) and constant difference k and the immediately higher k*n terms from the same progression. When k = 1, f(k,n) = A059270(n). - Charlie Marion, Aug 23 2021

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
  • Jolley, Summation of Series, Dover (1961).
  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269

Crossrefs

Cf. A001844. A001844(n+1)^2 - a(n) and A001844(n+1)^2 + a(n) are both square numbers. - Doug Bell, Mar 08 2009
Cf. A000466. a(n) = Sum_{k=0..2n+3} (A000466(n+1) + 2k) which is the sum of 2n+4 consecutive odd integers starting at A000466(n+1). - Doug Bell, Mar 08 2009

Programs

Formula

Sum_{n>=0} (-1)^n/a(n) = (Pi-3)/4 = 0.03539816339... [Jolley, eq. 244]
Sum_{n>=0} 1/a(n) = 3/4 - log(2) = 0.05685281... [Jolley, eq. 249]
G.f.: ( 24+24*x ) / (x-1)^4. - R. J. Mathar, Oct 03 2011

A098737 Triangle read by rows: number of triangles formed by lines from two vertices of a triangle to the opposite side that segment the opposite sides into m and n segments. Since f(m,n) = f(n,m), it suffices to give the results in a triangular table.

Original entry on oeis.org

1, 3, 8, 6, 15, 27, 10, 24, 42, 64, 15, 35, 60, 90, 125, 21, 48, 81, 120, 165, 216, 28, 63, 105, 154, 210, 273, 343, 36, 80, 132, 192, 260, 336, 420, 512, 45, 99, 162, 234, 315, 405, 504, 612, 729, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, 66, 143, 231, 330
Offset: 1

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Oct 29 2004

Keywords

Comments

Frank Buss gave this as a puzzle; K. L. Metlov solved it, submitting his result in the J language created by Kenneth Iverson. The program given below is only five tokens long. J defines a series of three functions to be a "fork" defined by x (f g h ) y = (x f y) g (f h y) - a generalization of the usual mathematical practice of writing (f + g) y to mean (f y) + (g y). J also has a primitive "half" and has a dummy function "cap" whose purpose is to permit more forks to be written. 3 (* * +) 5 is thus (3 * 5) * (3 + 5) or 120. cap half 3 (* * +) 5 is thus 60.
This sequence is the dimensions of the various irreducible representations of SU(3). In the language of physics, the integers m and n are one more than the numbers of quarks or antiquarks, respectively, that label the representation. - Alex Meiburg, Dec 13 2020 =
Comment on the previous one: D(n, m) = f(m+1, n+1) = (n+1)*(m+1)*(n+m+2), for 0 <= m <= n, (given as array D(n,m) as example in A212331) is the dimension of the irreducible SU(3) multiplet (n, m), denoted also by D(n, m). The multiplet (m, n) is denoted also by a bar over D(n, m). The irreducuble tensor t(n, m) is symmetric in n upper indices from {1,2,3}, symmetric in m lower indices, and traceless in every pair of an upper and a lower index. See the Coleman reference for a derivation. - Wolfdieter Lang, Dec 18 2020

Examples

			f(3, 5) is 60, from 1/2 * (3 * 5) * (3 + 5) or 1/2 * 15 * 8.
The triangle f(m, n) starts:
m\n     1   2   3   4   5   6   7   8   9   10   11 ...
1:      1
2:      3   8
3:      6  15  27
4:     10  24  42  64
5:     15  35  60  90 125
6:     21  48  81 120 165 216
7:     28  63 105 154 210 273 343
8:     36  80 132 192 260 336 420 512
9:     45  99 162 234 315 405 504 612 729
10:    55 120 195 280 375 480 595 720 855 1000
11:    66 143 231 330 440 561 693 836 990 1155 1331
... reformatted and extended by _Wolfdieter Lang_, Dec 18 2020
		

References

  • Sidney Coleman, Quantum Field Theory, Eds. Bryan Gin-ge Chen et al., World Scientific, 2019, eq. (37.8), p. 799.

Crossrefs

Cf. A000217, A005563, A140091, A067728, A212331, A140681 (columns), A000578, A059270, A331433 (diagonals).
(diagonal).
See also A107985, A212331 (array as example).

Programs

  • J
    cap half * * +
  • Mathematica
    t[m_, n_] := (m*n)(m + n)/2; Flatten[ Table[ t[m, n], {m, 10}, {n, m}]] (* Robert G. Wilson v, Nov 04 2004 *)

Formula

f(m, n) = 1/2 * (m * n) * (m + n).
G.f.: x*y*(1 + 4*x*y + x^2*(y - 9)*y - 3*x^3*(y - 1)*y + 3*x^4*y^2)/((1 - x)^3*(1 - x*y)^4). - Stefano Spezia, Oct 01 2023

Extensions

More terms from Robert G. Wilson v, Nov 04 2004
Showing 1-10 of 25 results. Next