A006011
a(n) = n^2*(n^2 - 1)/4.
Original entry on oeis.org
0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0
From _Bruno Berselli_, Aug 29 2014: (Start)
After the zeros, the sequence is provided by the row sums of the triangle:
3;
4, 14;
5, 16, 39;
6, 18, 42, 84;
7, 20, 45, 88, 155;
8, 22, 48, 92, 160, 258;
9, 24, 51, 96, 165, 264, 399;
10, 26, 54, 100, 170, 270, 406, 584;
11, 28, 57, 104, 175, 276, 413, 592, 819;
12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Miguel Azaola and Francisco Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., Vol. 27 (2002), pp. 29-48 (see Prop. 4.2(a)).
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, Triangular Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000217,
A000290,
A000537,
A001477,
A002415,
A008911,
A047928,
A059270,
A083374,
A126274,
A163932,
A228317
-
[n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
-
A006011 := proc(n)
n^2*(n^2-1)/4 ;
end proc: # R. J. Mathar, Nov 29 2015
-
Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
-
a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013
A126890
Triangle read by rows: T(n,k) = n*(n+2*k+1)/2, 0 <= k <= n.
Original entry on oeis.org
0, 1, 2, 3, 5, 7, 6, 9, 12, 15, 10, 14, 18, 22, 26, 15, 20, 25, 30, 35, 40, 21, 27, 33, 39, 45, 51, 57, 28, 35, 42, 49, 56, 63, 70, 77, 36, 44, 52, 60, 68, 76, 84, 92, 100, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 66, 77, 88
Offset: 0
From _Philippe Deléham_, Oct 03 2011: (Start)
Triangle begins:
0;
1, 2;
3, 5, 7;
6, 9, 12, 15;
10, 14, 18, 22, 26;
15, 20, 25, 30, 35, 40;
21, 27, 33, 39, 45, 51, 57;
28, 35, 42, 49, 56, 63, 70, 77; (End)
- Léonard Euler, Introduction à l'analyse infinitésimale, tome premier, ACL-Editions, Paris, 1987, p. 353-354.
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Émile Fourrey, Les nombres abstraits, Récreations arithmétiques, 1899 and later, Vuibert, Paris, page 86-87. Triangle without right diagonal.
- Adrien-Marie Legendre, Théorie des nombres, tome 2, quatrième partie, p.131, troisième édition, Paris, 1830.
-
a126890 n k = a126890_tabl !! n !! k
a126890_row n = a126890_tabl !! n
a126890_tabl = map fst $ iterate
(\(xs@(x:_), i) -> (zipWith (+) ((x-i):xs) [2*i+1 ..], i+1)) ([0], 0)
-- Reinhard Zumkeller, Nov 10 2013
-
Flatten[Table[(n(n+2k+1))/2,{n,0,20},{k,0,n}]] (* Harvey P. Dale, Jun 21 2013 *)
A110449
Triangle read by rows: T(n,k) = n*((2*k+1)*n+1)/2, 0<=k<=n.
Original entry on oeis.org
0, 1, 2, 3, 7, 11, 6, 15, 24, 33, 10, 26, 42, 58, 74, 15, 40, 65, 90, 115, 140, 21, 57, 93, 129, 165, 201, 237, 28, 77, 126, 175, 224, 273, 322, 371, 36, 100, 164, 228, 292, 356, 420, 484, 548, 45, 126, 207, 288, 369, 450, 531, 612, 693, 774, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 1055
Offset: 0
Triangle starts:
0;
1, 2;
3, 7, 11;
6, 15, 24, 33;
10, 26, 42, 58, 74;
...
-
Table[n*((2*k + 1)*n + 1)/2, {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
-
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(n*((2*k+1)*n+1)/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015
A059255
Both sum of n+1 consecutive squares and sum of the immediately following n consecutive squares.
Original entry on oeis.org
0, 25, 365, 2030, 7230, 19855, 45955, 94220, 176460, 308085, 508585, 802010, 1217450, 1789515, 2558815, 3572440, 4884440, 6556305, 8657445, 11265670, 14467670, 18359495, 23047035, 28646500, 35284900, 43100525, 52243425, 62875890, 75172930, 89322755, 105527255, 124002480
Offset: 0
a(3) = 2030 = 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2.
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 68 at p. 152.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Boardman, Proof Without Words: Pythagorean Runs, Math. Mag., 73 (2000), 59.
- L. E. Dickson, History of the Theory of Numbers, II, p. 320.
- Georges Dostor, Question sur les nombres, Archiv der Mathematik und Physik, 64 (1879), 350-352.
- Greg Frederickson, Casting Light on Cube Dissections, Math. Mag., 82 (2009), 323-331.
- Vladimir Gurvich and Mariya Naumova, On pairs of triangular numbers whose product is a perfect square and pairs of intervals of successive integers with equal sums of squares, arXiv:2508.06598 [math.NT], 2025. See p. 3.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
The n+1 consecutive squares start with the square of
A014105, while the n consecutive squares start with the square of
A001844.
-
[n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 : n in [0..50]]; // Wesley Ivan Hurt, Jun 21 2014
-
A059255:=n->n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6; seq(A059255(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014
-
Table[1/6(-1+n)(-n+14n^2-36n^3+24n^4),{n,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,25,365,2030,7230,19855},40] (* Harvey P. Dale, May 09 2011 *)
-
a(n)=n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 \\ Charles R Greathouse IV, Jul 27 2021
A063657
Numbers with property that truncated square root is unequal to rounded square root.
Original entry on oeis.org
3, 7, 8, 13, 14, 15, 21, 22, 23, 24, 31, 32, 33, 34, 35, 43, 44, 45, 46, 47, 48, 57, 58, 59, 60, 61, 62, 63, 73, 74, 75, 76, 77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 133, 134, 135, 136, 137, 138, 139, 140
Offset: 1
7 is in the sequence because its square root is 2.64575..., which truncates to 2 but rounds to 3.
8 is in the sequence because its square root is 2.828427..., which also truncates to 2 but rounds to 3.
9 is not in the sequence because its square root is 3 exactly, which truncates and rounds the same.
Here is the example per Lamoen's skip n, take n - 1 process: starting at 0, we skip one integer (0) but take zero integers for our sequence. Then we skip two integers (1 and 2) and take one integer (3) for our sequence. Then we skip three integers (4, 5, 6) and take two integers for our sequence (7 and 8, so the sequence now stands as 3, 7, 8). Then we skip four integers (9, 10, 11, 12) and so on and so forth.
From _Seiichi Manyama_, Sep 19 2017: (Start)
See R. B. Nelsen's paper.
k| A063656(n) | a(n)
-------------------------------------------------------------------
0| 0
1| 1 + 2 = 3
2| 4 + 5 + 6 = 7 + 8
3| 9 + 10 + 11 + 12 = 13 + 14 + 15
4| 16 + 17 + 18 + 19 + 20 = 21 + 22 + 23 + 24
| ...
(End)
The triangle begins as:
3;
7, 8;
13, 14, 15;
21, 22, 23, 24;
31, 32, 33, 34, 35;
43, 44, 45, 46, 47, 48;
57, 58, 59, 60, 61, 62, 63;
73, 74, 75, 76, 77, 78, 79, 80;
91, 92, 93, 94, 95, 96, 97, 98, 99;
... - _Stefano Spezia_, Oct 20 2024
-
a063657 n = a063657_list !! n
a063657_list = f 0 [0..] where
f k (_:xs) = us ++ f (k + 1) (drop (k + 1) vs) where
(us, vs) = splitAt k xs
-- Reinhard Zumkeller, Jun 20 2015
-
A063657:=n->`if`(floor(floor(sqrt(n+1)) * (1+floor(sqrt(n+1)))/(n+1))=1, NULL, n+1); seq(A063657(n), n=1..200); # Wesley Ivan Hurt, Dec 28 2013
-
Select[ Range[200], Floor[ Sqrt[ # ]] != Floor[ Sqrt[ # ] + 1/2] & ] (* or *) Select[ Range[200], First[ Last[ ContinuedFraction[ Sqrt[ # ]]]] == 1 & ]
-
{ n=0; for (m=0, 10^9, if (sqrt(m)%1 > .5, write("b063657.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 27 2009
A065177
Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 15, 12, 4, 1, 0, 9, 42, 42, 20, 5, 1, 0, 18, 107, 156, 90, 30, 6, 1, 0, 30, 294, 554, 420, 165, 42, 7, 1, 0, 56, 780, 2028, 1910, 930, 273, 56, 8, 1, 0, 99, 2128, 7350, 8820, 5155, 1806, 420, 72, 9, 1, 0, 186, 5781, 26936
Offset: 0
Upper left corner starts as:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 3, 6, 9, 18, ...
1, 2, 6, 15, 42, 107, 294, ...
1, 3, 12, 42, 156, 554, 2028, ...
1, 4, 20, 90, 420, 1910, 8820, ...
1, 5, 30, 165, 930, 5155, 28830, ...
1, 6, 42, 273, 1806, 11809, 77658, ...
...
-
[seq(DistSS_table(j),j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));
with(numtheory); DistSS := proc(n,b) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;
-
trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;
a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];
Table[a[n], {n, 0, 119}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)
A222716
Numbers which are both the sum of n+1 consecutive triangular numbers and the sum of the n-1 immediately following triangular numbers.
Original entry on oeis.org
0, 10, 100, 460, 1460, 3710, 8120, 15960, 28920, 49170, 79420, 122980, 183820, 266630, 376880, 520880, 705840, 939930, 1232340, 1593340, 2034340, 2567950, 3208040, 3969800, 4869800, 5926050, 7158060, 8586900, 10235260, 12127510, 14289760, 16749920, 19537760, 22684970, 26225220, 30194220, 34629780, 39571870, 45062680, 51146680
Offset: 1
T(1) + T(2) + T(3) = 1 + 3 + 6 = 10 = T(4) and 4 = 2^2, so a(2) = 10.
T(5) + T(6) + T(7) + T(8) = 15 + 21 + 28 + 36 = 100 = 45 + 55 = T(9) + T(10) and 9 = 3^2, so a(3) = 100.
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Roger B. Nelsen and Hasan Unal, Proof Without Words: Runs of Triangular Numbers, Math. Mag., 85 (2012), 373.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
Table[ n/6 (2 - 5 n^2 + 3 n^4), {n, 1, 40}]
LinearRecurrence[{6,-15,20,-15,6,-1},{0,10,100,460,1460,3710},40] (* Harvey P. Dale, Apr 19 2016 *)
A241016
Triangle read by rows: T(n, k) = sum of k-th row of n X n square filled with the numbers 1 through n^2 reading across rows left-to-right.
Original entry on oeis.org
1, 3, 7, 6, 15, 24, 10, 26, 42, 58, 15, 40, 65, 90, 115, 21, 57, 93, 129, 165, 201, 28, 77, 126, 175, 224, 273, 322, 36, 100, 164, 228, 292, 356, 420, 484, 45, 126, 207, 288, 369, 450, 531, 612, 693, 55, 155, 255, 355, 455, 555, 655, 755, 855, 955, 66, 187, 308, 429, 550
Offset: 1
The triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 3 7
3: 6 15 24
4: 10 26 42 58
5: 15 40 65 90 115
6: 21 57 93 129 165 201
7: 28 77 126 175 224 273 322
8: 36 100 164 228 292 356 420 484
9: 45 126 207 288 369 450 531 612 693
10: 55 155 255 355 455 555 655 755 855 955
... reformatted - _Wolfdieter Lang_, Dec 08 2014
-
Table[Sum[n*(k - 1) + j, {j,1,n}], {n,1,10}, {k,1,n}] // Flatten (* G. C. Greubel, Aug 23 2017 *)
-
trg(nn) = {for (n=1, nn, mm = matrix(n, n, i, j, j + n*(i-1)); for (i=1, n, print1(sum(j=1, n, mm[i, j]), ", ");); print(););} \\ Michel Marcus, Sep 15 2014
A069074
a(n) = (2*n+2)*(2*n+3)*(2*n+4) = 24*A000330(n+1).
Original entry on oeis.org
24, 120, 336, 720, 1320, 2184, 3360, 4896, 6840, 9240, 12144, 15600, 19656, 24360, 29760, 35904, 42840, 50616, 59280, 68880, 79464, 91080, 103776, 117600, 132600, 148824, 166320, 185136, 205320, 226920, 249984, 274560, 300696, 328440, 357840
Offset: 0
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 53.
- T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 190.
- Jolley, Summation of Series, Dover (1961).
- Konrad Knopp, Theory and application of infinite series, Dover, p. 269
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original german edition of "Theory and Application of Infinite Series")
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A000466. a(n) = Sum_{k=0..2n+3} (
A000466(n+1) + 2k) which is the sum of 2n+4 consecutive odd integers starting at
A000466(n+1). -
Doug Bell, Mar 08 2009
-
[(2*n+2)*(2*n+3)*(2*n+4): n in [0..40]]; // Vincenzo Librandi, Oct 04 2011
-
LinearRecurrence[{4,-6,4,-1},{24,120,336,720},40] (* Harvey P. Dale, Apr 10 2017 *)
-
a(n)=6*binomial(2*n+4,3) \\ Charles R Greathouse IV, Mar 21 2015
A098737
Triangle read by rows: number of triangles formed by lines from two vertices of a triangle to the opposite side that segment the opposite sides into m and n segments. Since f(m,n) = f(n,m), it suffices to give the results in a triangular table.
Original entry on oeis.org
1, 3, 8, 6, 15, 27, 10, 24, 42, 64, 15, 35, 60, 90, 125, 21, 48, 81, 120, 165, 216, 28, 63, 105, 154, 210, 273, 343, 36, 80, 132, 192, 260, 336, 420, 512, 45, 99, 162, 234, 315, 405, 504, 612, 729, 55, 120, 195, 280, 375, 480, 595, 720, 855, 1000, 66, 143, 231, 330
Offset: 1
Eugene McDonnell (eemcd(AT)mac.com), Oct 29 2004
f(3, 5) is 60, from 1/2 * (3 * 5) * (3 + 5) or 1/2 * 15 * 8.
The triangle f(m, n) starts:
m\n 1 2 3 4 5 6 7 8 9 10 11 ...
1: 1
2: 3 8
3: 6 15 27
4: 10 24 42 64
5: 15 35 60 90 125
6: 21 48 81 120 165 216
7: 28 63 105 154 210 273 343
8: 36 80 132 192 260 336 420 512
9: 45 99 162 234 315 405 504 612 729
10: 55 120 195 280 375 480 595 720 855 1000
11: 66 143 231 330 440 561 693 836 990 1155 1331
... reformatted and extended by _Wolfdieter Lang_, Dec 18 2020
- Sidney Coleman, Quantum Field Theory, Eds. Bryan Gin-ge Chen et al., World Scientific, 2019, eq. (37.8), p. 799.
-
cap half * * +
-
t[m_, n_] := (m*n)(m + n)/2; Flatten[ Table[ t[m, n], {m, 10}, {n, m}]] (* Robert G. Wilson v, Nov 04 2004 *)
Showing 1-10 of 25 results.
Comments