cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A014105 Second hexagonal numbers: a(n) = n*(2*n + 1).

Original entry on oeis.org

0, 3, 10, 21, 36, 55, 78, 105, 136, 171, 210, 253, 300, 351, 406, 465, 528, 595, 666, 741, 820, 903, 990, 1081, 1176, 1275, 1378, 1485, 1596, 1711, 1830, 1953, 2080, 2211, 2346, 2485, 2628, 2775, 2926, 3081, 3240, 3403, 3570, 3741, 3916, 4095, 4278
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

Comments

Note that when starting from a(n)^2, equality holds between series of first n+1 and next n consecutive squares: a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2*n)^2; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2. - Henry Bottomley, Jan 22 2001; with typos fixed by Zak Seidov, Sep 10 2015
a(n) = sum of second set of n consecutive even numbers - sum of the first set of n consecutive odd numbers: a(1) = 4-1, a(3) = (8+10+12) - (1+3+5) = 21. - Amarnath Murthy, Nov 07 2002
Partial sums of odd numbers 3 mod 4, that is, 3, 3+7, 3+7+11, ... See A001107. - Jon Perry, Dec 18 2004
If Y is a fixed 3-subset of a (2n+1)-set X then a(n) is the number of (2n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
More generally (see the first comment), for n > 0, let b(n,k) = a(n) + k*(4*n + 1). Then b(n,k)^2 + (b(n,k) + 1)^2 + ... + (b(n,k) + n)^2 = (b(n,k) + n + 1 + 2*k)^2 + ... + (b(n,k) + 2*n + 2*k)^2 + k^2; e.g., if n = 3 and k = 2, then b(n,k) = 47 and 47^2 + ... + 50^2 = 55^2 + ... + 57^2 + 2^2. - Charlie Marion, Jan 01 2011
Sequence found by reading the line from 0, in the direction 0, 10, ..., and the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Nov 09 2011
a(n) is the number of positions of a domino in a pyramidal board with base 2n+1. - César Eliud Lozada, Sep 26 2012
Differences of row sums of two consecutive rows of triangle A120070, i.e., first differences of A016061. - J. M. Bergot, Jun 14 2013 [In other words, the partial sums of this sequence give A016061. - Leo Tavares, Nov 23 2021]
a(n)*Pi is the total length of half circle spiral after n rotations. See illustration in links. - Kival Ngaokrajang, Nov 05 2013
For corresponding sums in first comment by Henry Bottomley, see A059255. - Zak Seidov, Sep 10 2015
a(n) also gives the dimension of the simple Lie algebras B_n (n >= 2) and C_n (n >= 3). - Wolfdieter Lang, Oct 21 2015
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for unsigned A130757, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 13 2015
Partial sums of squares with alternating signs, ending in an even term: a(n) = 0^2 - 1^2 +- ... + (2*n)^2, cf. Example & Formula from Berselli, 2013. - M. F. Hasler, Jul 03 2018
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central peak and the largest Dyck path has a central valley, n > 0. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
a(n) is the area of a triangle with vertices at (0,0), (2*n+1, 2*n), and ((2*n+1)^2, 4*n^2). - Art Baker, Dec 12 2018
This sequence is the largest subsequence of A000217 such that gcd(a(n), 2*n) = a(n) mod (2*n) = n, n > 0 up to a given value of n. It is the interleave of A033585 (a(n) is even) and A033567 (a(n) is odd). - Torlach Rush, Sep 09 2019
A generalization of Hasler's Comment (Jul 03 2018) follows. Let P(k,n) be the n-th k-gonal number. Then for k > 1, partial sums of {P(k,n)} with alternating signs, ending in an even term, = n*((k-2)*n + 1). - Charlie Marion, Mar 02 2021
Let U_n(H) = {A in M_n(H): A*A^H = I_n} be the group of n X n unitary matrices over the quaternions (A^H is the conjugate transpose of A. Note that over the quaternions we still have A*A^H = I_n <=> A^H*A = I_n by mapping A and A^H to (2n) X (2n) complex matrices), then a(n) is the dimension of its Lie algebra u_n(H) = {A in M_n(H): A + A^H = 0} as a real vector space. A basis is given by {(E_{st}-E_{ts}), i*(E_{st}+E_{ts}), j*(E_{st}+E_{ts}), k*(E_{st}+E_{ts}): 1 <= s < t <= n} U {i*E_{tt}, j*E_{tt}, k*E_{tt}: t = 1..n}, where E_{st} is the matrix with all entries zero except that its (st)-entry is 1. - Jianing Song, Apr 05 2021

Examples

			For n=6, a(6) = 0^2 - 1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2 + 8^2 - 9^2 + 10^2 - 11^2 + 12^2 = 78. - _Bruno Berselli_, Aug 29 2013
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)

Crossrefs

Second column of array A094416.
Equals A033586(n) divided by 4.
See Comments of A132124.
Second n-gonal numbers: A005449, A147875, A045944, A179986, A033954, A062728, A135705.
Row sums in triangle A253580.

Programs

Formula

a(n) = 3*Sum_{k=1..n} tan^2(k*Pi/(2*(n + 1))). - Ignacio Larrosa Cañestro, Apr 17 2001
a(n)^2 = n*(a(n) + 1 + a(n) + 2 + ... + a(n) + 2*n); e.g., 10^2 = 2*(11 + 12 + 13 + 14). - Charlie Marion, Jun 15 2003
From N. J. A. Sloane, Sep 13 2003: (Start)
G.f.: x*(3 + x)/(1 - x)^3.
E.g.f.: exp(x)*(3*x + 2*x^2).
a(n) = A000217(2*n) = A000384(-n). (End)
a(n) = A084849(n) - 1; A100035(a(n) + 1) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = A126890(n, k) + A126890(n, n-k), 0 <= k <= n. - Reinhard Zumkeller, Dec 30 2006
a(2*n) = A033585(n); a(3*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = a(n-1) + 4*n - 1 (with a(0) = 0). - Vincenzo Librandi, Dec 24 2010
a(n) = Sum_{k=0.2*n} (-1)^k*k^2. - Bruno Berselli, Aug 29 2013
a(n) = A242342(2*n + 1). - Reinhard Zumkeller, May 11 2014
a(n) = Sum_{k=0..2} C(n-2+k, n-2) * C(n+2-k, n), for n > 1. - J. M. Bergot, Jun 14 2014
a(n) = floor(Sum_{j=(n^2 + 1)..((n+1)^2 - 1)} sqrt(j)). Fractional portion of each sum converges to 1/6 as n -> infinity. See A247112 for a similar summation sequence on j^(3/2) and references to other such sequences. - Richard R. Forberg, Dec 02 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, with a(0) = 0, a(1) = 3, and a(2) = 10. - Harvey P. Dale, Feb 10 2015
Sum_{n >= 1} 1/a(n) = 2*(1 - log(2)) = 0.61370563888010938... (A188859). - Vaclav Kotesovec, Apr 27 2016
From Wolfdieter Lang, Apr 27 2018: (Start)
a(n) = trinomial(2*n, 2) = trinomial(2*n, 2*(2*n-1)), for n >= 1, with the trinomial irregular triangle A027907; i.e., trinomial(n,k) = A027907(n,k).
a(n) = (1/Pi) * Integral_{x=0..2} (1/sqrt(4 - x^2)) * (x^2 - 1)^(2*n) * R(4*(n-1), x), for n >= 0, with the R polynomial coefficients given in A127672, and R(-m, x) = R(m, x). [See Comtet, p. 77, the integral formula for q = 3, n -> 2*n, k = 2, rewritten with x = 2*cos(phi).] (End)
a(n) = A002943(n)/2. - Ralf Steiner, Jul 23 2019
a(n) = A000290(n) + A002378(n). - Torlach Rush, Nov 02 2020
a(n) = A003215(n) - A000290(n+1). See Squared Hexagons illustration. Leo Tavares, Nov 23 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/2 + log(2) - 2. - Amiram Eldar, Nov 28 2021

Extensions

Link added and minor errors corrected by Johannes W. Meijer, Feb 04 2010

A059270 a(n) is both the sum of n+1 consecutive integers and the sum of the n immediately higher consecutive integers.

Original entry on oeis.org

0, 3, 15, 42, 90, 165, 273, 420, 612, 855, 1155, 1518, 1950, 2457, 3045, 3720, 4488, 5355, 6327, 7410, 8610, 9933, 11385, 12972, 14700, 16575, 18603, 20790, 23142, 25665, 28365, 31248, 34320, 37587, 41055, 44730, 48618, 52725, 57057, 61620
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Group the non-multiples of n as follows, e.g., for n = 4: (1,2,3), (5,6,7), (9,10,11), (13,14,15), ... Then a(n) is the sum of the members of the n-th group. Or, the sum of (n-1)successive numbers preceding n^2. - Amarnath Murthy, Jan 19 2004
Convolution of odds (A005408) and multiples of three (A008585). G.f. is the product of the g.f. of A005408 by the g.f. of A008585. - Graeme McRae, Jun 06 2006
Sums of rows of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006
Corresponds to the Wiener indices of C_{2n+1} i.e., the cycle on 2n+1 vertices (n > 0). - K.V.Iyer, Mar 16 2009
Also the product of the three numbers from A005843(n) up to A163300(n), divided by 8. - Juri-Stepan Gerasimov, Jul 26 2009
Partial sums of A033428. - Charlie Marion, Dec 08 2013
For n > 0, sum of multiples of n and (n+1) from 1 to n*(n+1). - Zak Seidov, Aug 07 2016
A generalization of Ianakiev's formula, a(n) = A005408(n)*A000217(n), follows. A005408(n+k)*A000217(n) is the sum of n+1 consecutive integers and, after skipping k integers, the sum of the n immediately higher consecutive integers. For example, for n = 3 and k = 2, 9*6 = 54 = 12+13+14+15 = 17+18+19. - Charlie Marion, Jan 25 2022

Examples

			a(5) = 25 + 26 + 27 + 28 + 29 + 30 = 31 + 32 + 33 + 34 + 35 = 165.
		

Crossrefs

Cf. A059255 for analog for sum of squares.
Cf. A222716 for the analogous sum of triangular numbers.
Cf. A234319 for nonexistence of analogs for sums of n-th powers, n > 2. - Jonathan Sondow, Apr 23 2014
Cf. A098737 (first subdiagonal).
Bisection of A109900.

Programs

  • Magma
    I:=[0, 3, 15, 42]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 23 2012
    
  • Maple
    A059270 := proc(n) n*(n+1)*(2*n+1)/2 ; end proc: # R. J. Mathar, Jul 10 2011
  • Mathematica
    # (#+1)(2#+1)/2 &/@ Range[0,39] (* Ant King, Jan 03 2011 *)
    CoefficientList[Series[3 x (1 + x)/(x - 1)^4, {x, 0, 39}], x]
    LinearRecurrence[{4,-6,4,-1},{0,3,15,42},50] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n) = n*(n+1)*(2*n+1)/2 \\ Charles R Greathouse IV, Mar 08 2013
  • Sage
    [bernoulli_polynomial(n+1,3) for n in range(0, 41)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*(n+1)*(2*n+1)/2.
a(n) = A000330(n)*3 = A006331(n)*3/2 = A055112(n)/2 = A000217(A002378(n)) - A000217(A005563(n-1)) = A000217(A005563(n)) - A000217(A002378(n)).
a(n) = A110449(n+1, n-1) for n > 1.
a(n) = Sum_{k=A000290(n) .. A002378(n)} k = Sum_{k=n^2..n^2+n} k.
a(n) = Sum_{k=n^2+n+1 .. n^2+2*n} k = Sum_{k=A002061(n+1) .. A005563(n)} k.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6 = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Ant King, Jan 03 2011
G.f.: 3*x*(1+x)/(1-x)^4. - Ant King, Jan 03 2011
a(n) = A000578(n+1) - A000326(n+1). - Ivan N. Ianakiev, Nov 29 2012
a(n) = A005408(n)*A000217(n) = a(n-1) + 3*A000290(n). -Ivan N. Ianakiev, Mar 08 2013
a(n) = n^3 + n^2 + A000217(n). - Charlie Marion, Dec 04 2013
From Ilya Gutkovskiy, Aug 08 2016: (Start)
E.g.f.: x*(6 + 9*x + 2*x^2)*exp(x)/2.
Sum_{n>=1} 1/a(n) = 2*(3 - 4*log(2)) = 0.4548225555204375246621... (End)
a(n) = Sum_{k=0..2*n} A001318(k). - Jacob Szlachetka, Dec 20 2021
a(n) = Sum_{k=0..n} A000326(k) + A005449(k). - Jacob Szlachetka, Dec 21 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(Pi-3). - Amiram Eldar, Sep 17 2022

A130052 Numbers that are the sum of one or more consecutive squares in more than one way.

Original entry on oeis.org

25, 365, 841, 1405, 1730, 2030, 3281, 3655, 3740, 4510, 4705, 4760, 4900, 5244, 5434, 5915, 5929, 7230, 7574, 8415, 8464, 9385, 11055, 11236, 11900, 12325, 12524, 14905, 16745, 17484, 18879, 19005, 19044, 19855, 20449, 20510, 21790, 22806, 23681
Offset: 1

Views

Author

Paul Richards, May 03 2007

Keywords

Examples

			25 = 3^2 + 4^2 = 5^2.
365 = 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
		

Crossrefs

Cf. A059255 (subsequence).

Programs

  • PARI
    ok(n) = {my(i=sqrtint(n), m=0); while(i>0&&m<2, my(a=i^2, j=i); while(j>0&&a<=n, if(a==n, m+=1); j-=1; a=a+j^2); i-=1); return(m>1)}
    {for(p=1, 24000, if(ok(p), print1(p,", ")))} \\ Antonio Roldán, Mar 09 2020

Extensions

Extended by Ray Chandler, May 04 2007

A222716 Numbers which are both the sum of n+1 consecutive triangular numbers and the sum of the n-1 immediately following triangular numbers.

Original entry on oeis.org

0, 10, 100, 460, 1460, 3710, 8120, 15960, 28920, 49170, 79420, 122980, 183820, 266630, 376880, 520880, 705840, 939930, 1232340, 1593340, 2034340, 2567950, 3208040, 3969800, 4869800, 5926050, 7158060, 8586900, 10235260, 12127510, 14289760, 16749920, 19537760, 22684970, 26225220, 30194220, 34629780, 39571870, 45062680, 51146680
Offset: 1

Views

Author

Jonathan Sondow, Mar 02 2013

Keywords

Comments

The n+1 consecutive triangular numbers start with the A028387(n-2)-th triangular number A000217(n^2-n-1), while the n-1 consecutive triangular numbers start with the A000290(n)-th triangular number A000217(n^2).
Similar sums of consecutive integers are A059270.
Similar sums of consecutive squares are A059255.
Berselli points out that a(n) = 10*A024166(n-1) = A000292(n-1)*(3*n^2 - 2). Since a(n) is a sum of triangular numbers, 10=1+2+3+4 is the 4th triangular number, A024166 is a sum of cubes, and A000292 is a tetrahedral number, is there a geometric proof of Berselli's formula? (Compare Nelsen and Unal's "Proof Without Words: Runs of Triangular Numbers.") [Jonathan Sondow, Mar 04 2013]

Examples

			T(1) + T(2) + T(3) = 1 + 3 + 6 = 10 = T(4) and 4 = 2^2, so a(2) = 10.
T(5) + T(6) + T(7) + T(8) = 15 + 21 + 28 + 36 = 100 = 45 + 55 = T(9) + T(10) and 9 = 3^2, so a(3) = 100.
		

Crossrefs

Programs

  • Mathematica
    Table[ n/6 (2 - 5 n^2 + 3 n^4), {n, 1, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,10,100,460,1460,3710},40] (* Harvey P. Dale, Apr 19 2016 *)

Formula

a(n) = T(n^2-n-1)+T(n^2-n)+...+T(n^2-1) = T(n^2)+T(n^2+1)+...+T(n^2+n-2), where T = A000217.
a(n) = (3*n^5 - 5*n^3 + 2*n)/6 = (n-1)*n*(n+1)*(3*n^2 - 2)/6.
G.f.: 10*x^2*(1+4*x+x^2)/(1-x)^6. [Bruno Berselli, Mar 04 2013]
a(n) = -a(-n) = 10*A024166(n-1) = A000292(n-1)*A100536(n). [Bruno Berselli, Mar 04 2013]
a(n) = TP(n^2-1)-TP(n^2-n-2) = TP(n^2+n-2)-TP(n^2-1) = TP(n-1)*(3*n^2-2), where TP = A000292. [Jonathan Sondow, Mar 04 2013]

A234319 Smallest sum of n-th powers of k+1 consecutive positive integers that equals the sum of n-th powers of the next k consecutive integers, or -n if none.

Original entry on oeis.org

0, 3, 25, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54
Offset: 0

Views

Author

Jonathan Sondow, Dec 23 2013

Keywords

Comments

a(n) is the smallest solution to m^n + (m+1)^n + ... + (m+k)^n = (m+k+1)^n + (m+k+2)^n + ... + (m+2*k)^n, or -n if no solution.
In 1879 Dostor gave all solutions for n = 2. In particular, a(2) = 25.
In 1906 Collignon proved that no solution exists for n = 3 and 4, so a(3) = -3 and a(4) = -4.
In 2013 Felten and Müller-Stach claimed to prove that no solution exists when n > 2, so if their proof is correct, a(n) = -n for n >= 3.

Examples

			m^0 + (m+1)^0 + ... + (m+k)^0 = k+1 > k = (m+k+1)^0 + (m+k+2)^0 + ... + (m+2*k)^0 for m > 0, so a(0) = -0 = 0.
1^1 + 2^1 = 3 = 3^1 is minimal for n = 1, so a(1) = 3.
3^2 + 4^2 = 25 = 5^2 is minimal for n = 2, so a(2) = 25.
		

References

  • Edouard Collignon, Note sur la résolution en entiers de m^2 + (m-r)^2 + ... + (m-kr)^2 = (m+r)^2 + ... + (m+kr)^2, Sphinx-Oedipe, 1 (1906-1907), 129-133.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x*(27*x^3 - 50*x^2 + 19*x + 3)/(x - 1)^2, {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 21 2014 *)
  • PARI
    Vec(x*(27*x^3-50*x^2+19*x+3)/(x-1)^2 + O(x^100)) \\ Colin Barker, Apr 23 2014

Formula

a(0) = A059270(0) = A059255(0).
a(1) = A059270(1) = A230718(1).
a(2) = A059255(2) = A230718(2).
a(n) = -n for n > 2.
G.f.: x*(27*x^3-50*x^2+19*x+3) / (x-1)^2. - Colin Barker, Apr 23 2014

A281153 Least number k such that Sum_{j=k..k+n-1}{j^2} = Sum_{j=k+n..t}{j^2}, for some t >= k+n.

Original entry on oeis.org

3, 10, 21, 36, 55, 78, 105, 136, 171, 210, 253, 300, 351, 406, 465, 18, 595, 666, 741, 820, 903, 990, 1081, 1176, 1275, 1378, 1485, 1596, 1711, 1830, 1953, 2080, 2211, 4, 2485, 2628, 2775, 12, 3081, 3240, 3403, 3570, 3741, 3916, 4095, 4278, 4465, 4656, 4851, 60
Offset: 2

Views

Author

Paolo P. Lava, Jan 16 2017

Keywords

Comments

With n = 17 consecutive numbers we can start from k = 18 but also from k = 528. The sequence considers only the least number: a(17) = 18.
In general t = k + 2*(n-1) but sometimes it differs, e.g., for n = 17, 35, 39, 51, 93, 127, 382, etc.

Examples

			a(2) = 3 because 3^2 + 4^2 = 5^2 and 3 is the least number to have this property;
a(3) = 10 because 10^2 + 11^2 + 12^2 = 13^2 + 14^2 and 10 is the least number to have this property.
a(4) = 21 because 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2 and 21 is the least number to have this property.
a(5) = 36 because 36^2 + 37^2 + 38^2 + 39^2 + 40^2 = 41^2 + 42^2 + 43^2 + 44^2 and 36 is the least number to have this property.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local a,b,c,j,k,n;  for n from 2 to q do for k from 1 to q do a:=add(j^h,j=k..k+n-1); b:=0;
    c:=k+n-1; while b
    				

A292564 Take 1, skip 3 * 1 - 1, take 2, skip 3 * 2 - 1, take 3, skip 3 * 3 - 1, ...

Original entry on oeis.org

0, 3, 4, 10, 11, 12, 21, 22, 23, 24, 36, 37, 38, 39, 40, 55, 56, 57, 58, 59, 60, 78, 79, 80, 81, 82, 83, 84, 105, 106, 107, 108, 109, 110, 111, 112, 136, 137, 138, 139, 140, 141, 142, 143, 144, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 210, 211, 212
Offset: 0

Views

Author

Seiichi Manyama, Sep 19 2017

Keywords

Crossrefs

Programs

  • Maple
    seq(seq(2*k^2+k+j,j=0..k),k=0..10); # Robert Israel, Sep 20 2017

Formula

a(n) = n + floor((sqrt(8*n+1)-1)/2)*(3*floor((sqrt(8*n+1)-1)/2)+1)/2. - Robert Israel, Sep 20 2017

A292565 Take 0, skip 3 * 1 + 1, take 1, skip 3 * 2 + 1, take 2, skip 3 * 3 + 1, ...

Original entry on oeis.org

5, 13, 14, 25, 26, 27, 41, 42, 43, 44, 61, 62, 63, 64, 65, 85, 86, 87, 88, 89, 90, 113, 114, 115, 116, 117, 118, 119, 145, 146, 147, 148, 149, 150, 151, 152, 181, 182, 183, 184, 185, 186, 187, 188, 189, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 265
Offset: 1

Views

Author

Seiichi Manyama, Sep 19 2017

Keywords

Examples

			   k|            A292564(n)^2          |            a(n)^2            |       Sum
   --------------------------------------------------------------------------------
   0|                              0^2                                     (=    0)
   1|                       3^2 +  4^2 =  5^2                              (=   25)
   2|               10^2 + 11^2 + 12^2 = 13^2 + 14^2                       (=  365)
   3|        21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2                (= 2030)
   4| 36^2 + 37^2 + 38^2 + 39^2 + 40^2 = 41^2 + 42^2 + 43^2 + 44^2         (= 7230)
    | ...
Row 3 is proved by the following:
(25^2 - 24^2) + (26^2 - 23^2) + (27^2 - 22^2) = 49*1 + 49*3 + 49*5 = 7^2*3^2 = 21^2.
Row k is proved by the same way.
		

Crossrefs

Programs

  • Mathematica
    Block[{s = Array[{# - 1, 3 # + 1} &, 12], r}, r = Range@ Total@ Flatten@ s; Map[Function[{a, b}, {First@ #, Set[r, Drop[Last@ #, b]]} &@ TakeDrop[r, a]] @@ # &, s][[All, 1]] // Flatten] (* Michael De Vlieger, Sep 25 2017 *)

Formula

Sum_{n = (k-1)*k/2+1 .. k*(k+1)/2} a(n)^2 = Sum_{n = k*(k+1)/2 .. (k+1)*(k+2)/2-1} A292564(n)^2 = A059255(k) for k > 0.
a(n) = n + 4 + (3k^2 + 11k)/2 where k = floor((sqrt(2*n) - 1/2)). - Jon E. Schoenfield, Sep 30 2017

A322135 Table of truncated square pyramid numbers, read by antidiagonals.

Original entry on oeis.org

1, 4, 5, 9, 13, 14, 16, 25, 29, 30, 25, 41, 50, 54, 55, 36, 61, 77, 86, 90, 91, 49, 85, 110, 126, 135, 139, 140, 64, 113, 149, 174, 190, 199, 203, 204, 81, 145, 194, 230, 255, 271, 280, 284, 285, 100, 181, 245, 294, 330, 355, 371, 380, 384, 385, 121, 221, 302
Offset: 1

Views

Author

Allan C. Wechsler, Nov 27 2018

Keywords

Comments

The n-th row contains n numbers: n^2, n^2 + (n-1)^2, ..., n^2 + (n-1)^2 + ... + 1^2.
All numbers that appear in the table are listed in ascending order at A034705.
All numbers that appear twice or more are listed at A130052.
The left column is A000290 (the squares).
The top row is A000330 (the square pyramidal numbers).
The columns are A000290, A099776 (or a tail of A001844), a tail of A005918 or A120328, a tail of A027575, a tail of A027578, a tail of A027865, ...
The first two rows are A000330 and a tail of A168599, but subsequent rows are not currently in the OEIS, and are all tails of A000330 minus various constants.
The main diagonal is A050410.

Examples

			The 17th term is entry 2 on antidiagonal 6, so we sum two terms: 6^2 + 5^2 = 61.
Table begins:
   1   5  14  30  55  91 140 204 ...
   4  13  29  54  90 139 203 ...
   9  25  50  86 135 199 ...
  16  41  77 126 190 ...
  25  61 110 174 ...
  36  85 149 ...
  49 113 ...
  64 ...
  ...
		

Crossrefs

See comments; also cf. A000330, A059255.

Programs

  • Mathematica
    T[n_,k_] = Sum[(n+i)^2, {i,0,k-1}]; Table[T[n-k+1, k], {n,1,10},  {k,1,n}] // Flatten (* Amiram Eldar, Nov 28 2018 *)
    f[n_] := Table[SeriesCoefficient[-((y (y (1 + y) + x (1 - 2 y - 3 y^2) + x^2 (1 - 3 y + 4 y^2)))/((-1 + x)^3 (-1 + y)^4)) , {x, 0,
    i + 1 - j}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f, 10]] (* Stefano Spezia, Nov 28 2018 *)

Formula

T(n,k) = n^2 + (n+1)^2 + ... + (n+k-1)^2 = A000330(n + k - 1) - A000330(n - 1) = T(n, k) = k*n^2 + (k^2 - k)*n + (1/3*k^3 - 1/2*k^2 + 1/6*k)
G.f.: -y*(y*(1 + y) + x*(1 - 2*y - 3*y^2) + x^2*(1 - 3*y + 4*y^2))/((- 1 + x)^3*(- 1 + y)^4). - Stefano Spezia, Nov 28 2018
Showing 1-9 of 9 results.