cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A298467 Smallest positive integer that can be expressed as the sum of consecutive positive squares in exactly n ways.

Original entry on oeis.org

1, 25, 20449, 554503705
Offset: 1

Views

Author

Seiichi Manyama, Jan 19 2018

Keywords

Comments

a(5) > 10^9. - Rémy Sigrist, Jan 19 2018
a(5) > 10^15. - Michael S. Branicky, Feb 18 2023

Examples

			a(2) = 25 because 3^2 + 4^2 = 5^2 = 25,
a(3) = 20449 because 7^2 + 8^2 + ... + 39^2 = 38^2 + 39^2 + ... + 48^2 = 143^2 = 20449.
a(4) = 554503705 because 480^2 + 481^2 + ... + 1210^2 = 3570^2 + 3571^2 + ... + 3612^2 = 3613^2 + 3614^2 + ... + 3654^2 = 7442^2 + 7443^2 ... + 7451^2 = 554503705. - _Rémy Sigrist_, Jan 19 2018
		

Crossrefs

Formula

a(n) <= A234311(n).

Extensions

a(4) from Rémy Sigrist, Jan 19 2018

A296338 a(n) = number of partitions of n into consecutive positive squares.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 14 2018

Keywords

Examples

			   1 = 1^2,                   so  a(1) = 1.
   4 = 2^2,                   so  a(4) = 1.
   5 = 1^2 + 2^2,             so  a(5) = 1.
   9 = 3^2,                   so  a(9) = 1.
  13 = 2^2 + 3^2,             so a(13) = 1.
  14 = 1^2 + 2^2 + 3^2,       so a(14) = 1.
  16 = 4^2,                   so a(16) = 1.
  25 = 3^2 + 4^2 = 5^2,       so a(25) = 2.
  29 = 2^2 + 3^2 + 4^2,       so a(29) = 1.
  30 = 1^2 + 2^2 + 3^2 + 4^2, so a(30) = 1.
		

Crossrefs

Programs

Formula

a(A034705(n)) >= 1 for n > 1.
G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^2). - Ilya Gutkovskiy, Apr 18 2019

A234304 Numbers with at least 3 representations as a sum of consecutive square numbers.

Original entry on oeis.org

20449, 147441, 910805, 1026745, 2403800, 2513434, 3198550, 8116801, 11739805, 15053585, 18646301, 33313175, 93812510, 102939515, 134910295, 136448235, 151443110, 163998695, 195435485, 197780465, 213872920, 267043455, 461498779, 482204660, 554503705, 559990541
Offset: 1

Views

Author

David W. Wilson, Dec 22 2013

Keywords

Examples

			20449 = 7^2 + .. + 39^2 = 38^2 + .. + 48^2 = 143^2.
		

Crossrefs

Cf. A130052 (numbers with at least 2 representations).

A309783 Numbers that are sums of one or more consecutive positive triangular numbers in more than one way.

Original entry on oeis.org

10, 36, 55, 64, 100, 120, 136, 164, 210, 276, 361, 435, 460, 514, 560, 596, 676, 760, 1176, 1225, 1320, 1326, 1460, 1484, 1485, 1505, 1540, 1684, 1736, 1770, 1891, 1936, 2014, 2080, 2145, 2180, 2314, 2485, 2596, 2890, 3156, 3244, 3275, 3364, 3486, 3570, 3710, 3916
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2019

Keywords

Comments

The first number that is the sum in three ways is 2180. The first that is the sum in four ways is 10053736. - Robert Israel, Aug 20 2019

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    V:= Vector(N):
    for i from 1 while i*(i+1)/2 <= N do
      s:= i*(i+1)*(i+2)/6;
      for j from i-1 to 0 by -1 do
        t:= j*(j+1)*(j+2)/6;
        if s-t > N then break fi;
        V[s-t]:= V[s-t]+1
      od;
    od:
    select(t -> V[t]>1, [$1..N]); # Robert Israel, Aug 20 2019

Formula

A307666(a(n)) > 1.

A299173 a(n) is the maximum number of squared consecutive positive integers into which the integer n can be partitioned.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jean-François Alcover, Feb 04 2018

Keywords

Comments

a(k^2)>=1, the inequality being strict if k is in A097812.

Examples

			25 = 5^2 = 3^2 + 4^2 and no such partition is longer, so a(25) = 2.
30 = 1^2 + 2^2 + 3^2 + 4^2 and no such partition is longer, so a(30) = 4.
2018 = 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 + 13^2 + 14^2 + 15^2 + 16^2 + 17^2 + 18^2 and no such partition is longer, so a(2018) = 12. (This special example is due to _Seiichi Manyama_.) - _Jean-François Alcover_, Feb 05 2018
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    A:= Vector(N):
    S:= n -> n*(n+1)*(2*n+1)/6:
    M:= floor(sqrt(N)):
    for d from 1 to M do
      for b from d to M do
        s:= S(b) - S(b-d);
        if s > N then break fi;
        A[s]:= d
    od od:
    convert(A,list); # Robert Israel, Feb 04 2018
  • Mathematica
    terms = 100; jmax = Ceiling[Sqrt[terms]]; kmax = Ceiling[(3*terms)^(1/3)]; Clear[a]; a[_] = 0; Do[r = Range[j, j + k - 1]; n = r . r; If[k > a[n], a[n] = k], {j, jmax}, {k, kmax}]; Array[a, terms]

A322135 Table of truncated square pyramid numbers, read by antidiagonals.

Original entry on oeis.org

1, 4, 5, 9, 13, 14, 16, 25, 29, 30, 25, 41, 50, 54, 55, 36, 61, 77, 86, 90, 91, 49, 85, 110, 126, 135, 139, 140, 64, 113, 149, 174, 190, 199, 203, 204, 81, 145, 194, 230, 255, 271, 280, 284, 285, 100, 181, 245, 294, 330, 355, 371, 380, 384, 385, 121, 221, 302
Offset: 1

Views

Author

Allan C. Wechsler, Nov 27 2018

Keywords

Comments

The n-th row contains n numbers: n^2, n^2 + (n-1)^2, ..., n^2 + (n-1)^2 + ... + 1^2.
All numbers that appear in the table are listed in ascending order at A034705.
All numbers that appear twice or more are listed at A130052.
The left column is A000290 (the squares).
The top row is A000330 (the square pyramidal numbers).
The columns are A000290, A099776 (or a tail of A001844), a tail of A005918 or A120328, a tail of A027575, a tail of A027578, a tail of A027865, ...
The first two rows are A000330 and a tail of A168599, but subsequent rows are not currently in the OEIS, and are all tails of A000330 minus various constants.
The main diagonal is A050410.

Examples

			The 17th term is entry 2 on antidiagonal 6, so we sum two terms: 6^2 + 5^2 = 61.
Table begins:
   1   5  14  30  55  91 140 204 ...
   4  13  29  54  90 139 203 ...
   9  25  50  86 135 199 ...
  16  41  77 126 190 ...
  25  61 110 174 ...
  36  85 149 ...
  49 113 ...
  64 ...
  ...
		

Crossrefs

See comments; also cf. A000330, A059255.

Programs

  • Mathematica
    T[n_,k_] = Sum[(n+i)^2, {i,0,k-1}]; Table[T[n-k+1, k], {n,1,10},  {k,1,n}] // Flatten (* Amiram Eldar, Nov 28 2018 *)
    f[n_] := Table[SeriesCoefficient[-((y (y (1 + y) + x (1 - 2 y - 3 y^2) + x^2 (1 - 3 y + 4 y^2)))/((-1 + x)^3 (-1 + y)^4)) , {x, 0,
    i + 1 - j}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f, 10]] (* Stefano Spezia, Nov 28 2018 *)

Formula

T(n,k) = n^2 + (n+1)^2 + ... + (n+k-1)^2 = A000330(n + k - 1) - A000330(n - 1) = T(n, k) = k*n^2 + (k^2 - k)*n + (1/3*k^3 - 1/2*k^2 + 1/6*k)
G.f.: -y*(y*(1 + y) + x*(1 - 2*y - 3*y^2) + x^2*(1 - 3*y + 4*y^2))/((- 1 + x)^3*(- 1 + y)^4). - Stefano Spezia, Nov 28 2018

A346163 Numbers k such that there exist equal sums of k and 2k consecutive positive squares.

Original entry on oeis.org

1, 17, 23, 25, 49, 55, 71, 73, 79, 89, 95, 103, 113, 127, 143, 161, 167, 175, 185, 191, 193, 199, 215, 217, 233, 239, 241, 265, 271, 287, 289, 305, 361, 377, 391, 409, 415, 431, 433, 457, 473, 481, 505, 511, 521, 535, 545, 553, 569, 593, 599, 617, 631, 647
Offset: 1

Views

Author

Johan Westin, Jul 08 2021

Keywords

Comments

a(n) is congruent to 1 or 5 (mod 6).
a(n) is not congruent to 3, 4 or 5 (mod 8) or to 7, 11, 16 or 20 (mod 27), see Alder and Alfred.
k is in the sequence if the quadratic Diophantine equation 6*(k*x^2 - 2*k*y^2 + k*(k-1)*x + 2*k*(1-2*k)*y) - 14*k^3 + 9*k^2 - k = 0 has solutions x, y in the positive integers.

Examples

			a(1): 5^2 = 3^2 + 4^2. Here the left-hand side has k = 1 term, and the right-hand side has 2k = 2 terms. Hence k = 1 is in the sequence.
a(2): 29^2 + 30^2 + ... + 44^2 + 45^2 = 8^2 + 9^2 + ... + 40^2 + 41^2 = 23681. Here the left and right sums have k = 17 and 2k = 34 terms, respectively. Hence k = 17 is in the sequence.
		

Crossrefs

Programs

  • Python
    import sympy # Version 1.8
    xx, yy = sympy.symbols("x y")
    def pyramidal(n):
        return n*(n+1)*(2*n+1)/6 # A000330(n)
    def expanded_diophantine(k,n):
        left_hand_side =  pyramidal(xx+n-1) - pyramidal(xx-1)
        right_hand_side =  pyramidal(yy+n+k-1) - pyramidal(yy-1)
        return sympy.expand(right_hand_side-left_hand_side)
    def has_solutions(k,n):
        return len(sympy.solvers.diophantine(expanded_diophantine(k,n))) != 0
    def k_in_a346163(k):
        return has_solutions(k,k)
Showing 1-7 of 7 results.