cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A334007 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero triangular numbers in exactly n ways.

Original entry on oeis.org

1, 10, 2180, 10053736, 13291443468940
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			Let S(k, m) denote the sum of m triangular numbers starting from k(k+1)/2. We have
a(1) = S(1, 1);
a(2) = S(4, 1) = S(1, 3);
a(3) = S(31, 4) = S(27, 5) = S(9, 15);
a(4) = S(945, 22) = S(571, 56) = S(968, 21) = S(131, 266);
a(5) = S(4109, 38947) = S(25213, 20540) = S(10296, 32943) = S(32801, 15834) = S(31654, 16472).
		

Crossrefs

Extensions

a(5) from Giovanni Resta, Apr 13 2020

A334012 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero octagonal numbers in exactly n ways.

Original entry on oeis.org

1, 1045, 5985
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			From _Seiichi Manyama_, May 16 2021: (Start)
Let S(k, m) denote the sum of m octagonal numbers starting from k*(3*k-2). We have
a(1) = S(1, 1);
a(2) = S(19, 1) = S(1, 10);
a(3) = S(45, 1) = S(11, 9) = S(1, 18). (End)
		

Crossrefs

A296338 a(n) = number of partitions of n into consecutive positive squares.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 14 2018

Keywords

Examples

			   1 = 1^2,                   so  a(1) = 1.
   4 = 2^2,                   so  a(4) = 1.
   5 = 1^2 + 2^2,             so  a(5) = 1.
   9 = 3^2,                   so  a(9) = 1.
  13 = 2^2 + 3^2,             so a(13) = 1.
  14 = 1^2 + 2^2 + 3^2,       so a(14) = 1.
  16 = 4^2,                   so a(16) = 1.
  25 = 3^2 + 4^2 = 5^2,       so a(25) = 2.
  29 = 2^2 + 3^2 + 4^2,       so a(29) = 1.
  30 = 1^2 + 2^2 + 3^2 + 4^2, so a(30) = 1.
		

Crossrefs

Programs

Formula

a(A034705(n)) >= 1 for n > 1.
G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k^2). - Ilya Gutkovskiy, Apr 18 2019

A334008 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero pentagonal numbers in exactly n ways.

Original entry on oeis.org

1, 287, 472320, 89051435880
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			Let S(k, m) denote the sum of m pentagonal numbers starting from the k-th. We have
a(1) = S(1, 1);
a(2) = S(14, 1) = S(2, 7);
a(3) = S(103, 24) = S(19, 80) = S(67, 41);
a(4) = S(10833, 484) = S(4542, 1936) = S(9153, 660) = S(2817, 3036);
		

Crossrefs

Extensions

a(4) from Giovanni Resta, Apr 13 2020

A334010 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero hexagonal numbers in exactly n ways.

Original entry on oeis.org

1, 703, 274550, 11132303325
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			Let S(k, m) denote the sum of m hexagonal numbers starting from the k-th. We have
a(1) = S(1, 1);
a(2) = S(19, 1) = S(13, 2);
a(3) = S(62, 25) = S(184, 4) = S(25, 51);
a(4) = S(3065, 505) = S(22490, 11) = S(1215, 1430) = S(1938, 946).
		

Crossrefs

Extensions

a(4) from Giovanni Resta, Apr 13 2020

A334011 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero heptagonal numbers in exactly n ways.

Original entry on oeis.org

1, 872, 8240232, 263346158075
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 12 2020

Keywords

Examples

			Let S(k, m) denote the sum of m heptagonal numbers starting from the k-th. We have
a(1) = S(1, 1);
a(2) = S(13, 2) = S(3, 8);
a(3) = S(133, 98) = S(479, 14) = S(168, 77);
a(4) = S(6773, 1785) = S(810, 6006) = S(7467, 1547) = S(38758, 70).
		

Crossrefs

Extensions

a(4) from Giovanni Resta, Apr 14 2020

A299173 a(n) is the maximum number of squared consecutive positive integers into which the integer n can be partitioned.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jean-François Alcover, Feb 04 2018

Keywords

Comments

a(k^2)>=1, the inequality being strict if k is in A097812.

Examples

			25 = 5^2 = 3^2 + 4^2 and no such partition is longer, so a(25) = 2.
30 = 1^2 + 2^2 + 3^2 + 4^2 and no such partition is longer, so a(30) = 4.
2018 = 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 + 13^2 + 14^2 + 15^2 + 16^2 + 17^2 + 18^2 and no such partition is longer, so a(2018) = 12. (This special example is due to _Seiichi Manyama_.) - _Jean-François Alcover_, Feb 05 2018
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    A:= Vector(N):
    S:= n -> n*(n+1)*(2*n+1)/6:
    M:= floor(sqrt(N)):
    for d from 1 to M do
      for b from d to M do
        s:= S(b) - S(b-d);
        if s > N then break fi;
        A[s]:= d
    od od:
    convert(A,list); # Robert Israel, Feb 04 2018
  • Mathematica
    terms = 100; jmax = Ceiling[Sqrt[terms]]; kmax = Ceiling[(3*terms)^(1/3)]; Clear[a]; a[_] = 0; Do[r = Range[j, j + k - 1]; n = r . r; If[k > a[n], a[n] = k], {j, jmax}, {k, kmax}]; Array[a, terms]

A343777 a(n) is the least integer that can be expressed as the sum of one or more consecutive nonzero n-gonal numbers in exactly n ways.

Original entry on oeis.org

2180, 554503705
Offset: 3

Views

Author

Ilya Gutkovskiy, Apr 30 2021

Keywords

Crossrefs

A329236 a(n) is the least integer that can be expressed as the sum of one or more consecutive centered triangular numbers in exactly n ways.

Original entry on oeis.org

1, 64, 1789760
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 13 2020

Keywords

Comments

If it exists, a(4) > 10^18. - Bert Dobbelaere, Apr 17 2020

Crossrefs

Showing 1-9 of 9 results.